Выражение можно переписать как (x-y)(x+y)(x²+y²+2z). Если х и y имеют разную четность, то все выражение нечетное (т.к. сумма и разность чисел разной четности - нечетные).. Если x и y оба четные, то все выражение делится на 8 (каждая скобка делится на 2). Если х и y оба нечетные, то опять все выражение делится на 8 (т.к. сумма и разность нечетных чисел - четные). Если х=1, y=0, то все выражение равно 2z+1, т.е. a может быть любым нечетным числом. Если х=2, y=0, то все выражение равно 8(2+z), т.е. а может быть любым числом кратным 8, кроме 8. И вообще, все это выражение не может равняться 8, т.к.если выражение кратно 8 и х≠y, то x-y≥2 и x+y≥2, а значит (x-y)(x+y)(x²+y²+2z)≥4(4+2z)≥16. Таким образом, а может быть любым нечетным числом, а их в интервале от 1 до 4000 всего 4000/2=2000 штук, любым кратным 8, кроме самой 8, а их всего 4000/8-1=499. Итого, существует 2499 значений а.
Если х и y имеют разную четность, то все выражение нечетное (т.к. сумма и разность чисел разной четности - нечетные)..
Если x и y оба четные, то все выражение делится на 8 (каждая скобка делится на 2).
Если х и y оба нечетные, то опять все выражение делится на 8 (т.к. сумма и разность нечетных чисел - четные).
Если х=1, y=0, то все выражение равно 2z+1, т.е. a может быть любым нечетным числом.
Если х=2, y=0, то все выражение равно 8(2+z), т.е. а может быть любым числом кратным 8, кроме 8. И вообще, все это выражение не может равняться 8, т.к.если выражение кратно 8 и х≠y, то x-y≥2 и x+y≥2, а значит (x-y)(x+y)(x²+y²+2z)≥4(4+2z)≥16.
Таким образом, а может быть любым нечетным числом, а их в интервале от 1 до 4000 всего 4000/2=2000 штук, любым кратным 8, кроме самой 8, а их всего 4000/8-1=499. Итого, существует 2499 значений а.
Русская классика ? на 6к.>
Зарубежная классика ?
Всего 18к.
Объяснение:
1.Решение по действиям:
1) (18-6):2=6(к) зарубежная классика.
2)18-6=12(к) русская классика.
Зарубежная классика - 6 книг.
Русская классика - 12книг.
2.Решение задачи с
уравнения:
Пусть Ира прочитала х книг
зарубежной классики, тогда
русской классики она прочла
(х+6) книг. Всего за лето Ира
прочитала х+(х+6) книг, что по
условию задачи составляет
18 книг. Составим уравнение:
х+(х+6)=18
х+х+6=18
2х+6=18
2х=18-6
2х=12
х=12:2
х=6 книг зарубежной классики.
6+6=12 книг русской классики.
Зарубежная классика - 6 книг.
Русская классика - 12 книг.