В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
fg4ne
fg4ne
22.08.2021 22:46 •  Алгебра

Найдите область значения функции y=(-x^2)+4

И 2 задание


Найдите область значения функции y=(-x^2)+4И 2 задание

Показать ответ
Ответ:
natalikc
natalikc
29.10.2020 08:32

E(y): y \in ( - \infty ; 4]

Объяснение:

y=-x^2+4 < = y = 4 - {x}^{2}

Графиком функции является парабола;

множитель при х² меньше нуля - ветви вниз.

Область определения: значение функции (у) может быть определено для любого значения аргумента (х)

D(y) = R

Точки экстремума (точки, в которых производная обращается в 0 или не определена:

y' = (-x^2+4)' \\ y'=-2x +0 =-2x

y' = (-x^2+4)' \\ y'=-2x +0 \\y' =-2x

Найдем значение х для у'=0

y' = 0 \: \\ - 2x = 0 \\ x = 0

y(0) = - 0 {}^{2} + 4 = 4

Для любого х > 0 у < 4

Для любого х < 0 у < 4

Точка (0;4) - точка максимума фунции.

Нижняя граница области значений функции отсутствует.

Следовательно, Область значений функции

E(y): y \in (- \inf ; 4]

E(y): y \in (- \infty ; 4]

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота