a) Рассмотри график функции y=x^2+3x+3 Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0 D = 9 - 4*3= - 3 Т.к. D = -3 < 0 , Следовательно, график y=x^2+3x+3 не пересекает ось Ох Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру Вычислим дискриминант для уравнения 4x-4x^2-2=0 D = 16 - 4*4*2 = -16 Следовательно, график y=4x-4x^2-2 не пересекает ось Ох Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0
D = 9 - 4*3= - 3
Т.к. D = -3 < 0 ,
Следовательно, график y=x^2+3x+3 не пересекает ось Ох
Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру
Вычислим дискриминант для уравнения 4x-4x^2-2=0
D = 16 - 4*4*2 = -16
Следовательно, график y=4x-4x^2-2 не пересекает ось Ох
Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
Общие формулы:
a(n) = a1 + d(n-1)
S(n) = (a1 + a(n))*n/2 = (2a1 + d(n-1))*n/2
1) a1 = 65; d = - 2
a32 = a1 + 31d = 65 + 31(-2) = 65 - 62 = 3
a40 = a1 + 39d = 65 + 39(-2) = 65 - 78 = - 13
2) a1 = 42; d = 34 - 42 = - 8
a24 = a1 + 23d = 42 + 23(-8) = - 142
S(24) = (a1 + a24)*24/2 = (42 - 142)*12 = - 100*12 = - 1200
3) b(n) = 2n - 5; b1 = - 3; b2 = - 1; d = 2; b80 = 155
S(80) = (a1 + a80)*80/2 = (-3+155)*40 = 152*40 = 6080
4) a1 = - 2,25; a11 = 10,25; n = 11
Найдем разность прогрессии d.
a11 = a1 + 10d
10,25 = - 2,25 + 10d
d = (10,25+2,25)/10 = 12,5/10 = 1,25
Проверим, при каком n получится 6,5.
a(n) = a1 + d(n-1)
6,5 = - 2,25 + 1,25*n - 1,25 = 1,25*n - 3,5
1,25*n = 6,5 + 3,5 = 10
n = 10/1,25 = 8
n целое, значит, 6,5 действительно член этой прогрессии.