Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Чтобы число делилось на 15, последняя цифра должна быть 5. Также это число должно делиться еще и на 3, т.к. , где 3 и 5 – простые числа.
получаем условие:
5+а+б+а+5=10+2а+б кратно 3;
b принадлежит множеству целых чисел от 0 до 9=>
при b=0: а=1,4,7
при b=1,4,7: а=2,5,8
при b=2,5,8: а=0,3,6,9
при b=3,6,9: а=1,4,7
Таким образом, в первой тройке значений имеем 10 вариантов чисел-палиндромов. Аналогично для второй и третьей тройки. В последнем варианте при b=9 имеем 3 варианта и того 30+3=33 варианта.
Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Первому каменщику потребуется 12 - 6 = 6 часов.
ответ: 6 часов и 12 часов.
Чтобы число делилось на 15, последняя цифра должна быть 5. Также это число должно делиться еще и на 3, т.к. , где 3 и 5 – простые числа.
получаем условие:
5+а+б+а+5=10+2а+б кратно 3;
b принадлежит множеству целых чисел от 0 до 9=>
при b=0: а=1,4,7
при b=1,4,7: а=2,5,8
при b=2,5,8: а=0,3,6,9
при b=3,6,9: а=1,4,7
Таким образом, в первой тройке значений имеем 10 вариантов чисел-палиндромов. Аналогично для второй и третьей тройки. В последнем варианте при b=9 имеем 3 варианта и того 30+3=33 варианта.
33 варианта.