По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
б) (4 - 3√5)² = 16-24√5+45 = 61-24√5
в) 2 х 4х
+ - = 0 | (x²-9)
х+3 х-3 х²-9
2(x-3) + x(x+3) - 4x 2x-6+x²+3x-4x x²+2x+3x-4x-6
= = =
x²-9 x²-9 x²-9
x²-x-6 (здесь дискриминантом решается) (x-3)(x+2)
= = (x-3) сокращ.
x²-9 (x-3)(x+3)
x+2
и остается =
x+3
5x²-16x+3 (по D) 5(x-3)(x-0.2) (x-3)(5x-1) x-3
г) = = =
25x²-1 (5x+1)(5x-1) (5x+1)(5x-1) 5x+1
д) 3x+3-4+2x-11>0
5x-12>0
5x>12
x>2.4
как-то так, извиняюсьь
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.