1. Вершина квадратной параболы является точкой её экстремума (максимума при отрицательном значении коэффициента при х² или минимума при его положительном значении). В общем виде уравнение квадратной параболы можно записать в следующем виде: , где q определяет ординату (т.е. значение по оси у) точки экстремума, -р определяет абсциссу (т.е. значение по оси х) точки экстремума, а k - это коэффициент, который показывает, насколько сжаты (k>1) или расширены (k<1) ветви заданной параболы относительно параболы с уравнением y=x². Положительный знак k говорит о том, что ветви параболы будут направлены вверх и экстремум является минимумом, а отрицательный знак k показывает, что ветви параболы направлены вниз и экстремум является максимумом. Фактически, k определяет точки, отличные от точки экстремума, через которую обязаны пройти ветви параболы. В нашем случае вершина параболы (точка В) лежит на оси х и сдвинута относительно начала координат на +5. Т.е. мы сразу можем записать, что q=0, p=-5. Тогда искомая функция примет вид:
У нас имеется точка А(-2;2), координаты которой мы и подставим в полученную формулу для нахождения k:
Окончательно, уравнение параболы будет иметь следующий вид:
При желании, это уравнение можно привести к "классическому" виду:
2. Как было рассмотрено выше, экстремумы квадратичной функции находятся в точке с координатами (-p,q). В условии функции заданы в канонической форме y=ax²+bx+c, поэтому сначала найдем формулы, связывающие искомые p,q с известными a,b,c. С этой целью выделим в уравнении y=ax²+bx+c полный квадрат: Для решения поставленной задачи представляет интерес определение величины -p - абсциссы точки экстремума. Ордината, т.е. значение экстремума, будет найдена путем подстановки величины -p вместо х в исходное уравнение.
4x²+4x-4-7-2/(x²+x-1)≤0
4*(x²+x-1)-7-2/(x²+x-1)≤0
x²+x-1=t, t≠0
4t-7-2/t≤0
(4t²-7t-2)/t≤0
метод интервалов:
1. 4t²-7t-2=0
D=81, t₁=-1/4, t₂=2
t=0
2.
- + - +
|||>t
-1/4 0 2
t∈(-∞;-1/4]U(0;2]
1. t₁≤-1/4,
x²+x-1≤-1/4, x²+x-3/4≤0 метод интервалов:
x²+x-3/4=0, x₁=-1,5. x₂=0,5
+ - +
||>x
-1,5 0,5
x∈[-1,5;0,5]
2. 0<t₂≤2
t>0, x²+x-1>0
D=5
x₁=(-1-√5)/2. x₂=(-1+√5)/2
+ - +
||>x
-(1+√5)/2 (-1+√5)/2
x∈(-∞;-(1+√5)/2)U((-1+√5)/2;∞)
t≤2, x²+x-1≤2, x²+x-3≤0 метод интервалов:
x²+x-3=0
x₁=(-1-√13)/2
x₂=(-1+√13)/2
+ - +
||>x
-(1+√13)/2 (-1+√13)/2
x∈[-(1+√13)/2;(-1+√13)/2]
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
[)[](]>x
(-1-√13)/2 (-1-√5)/2 -1,5 0,5 (-1+√5)/2 (-1+√13)/2
x∈[(-1-√13)/2;(-1-√5)/2)U[-1,5;0,5]U((-1+√5)/2;(-1+√13)/2]
(-1+√13)/2≈1,3
ответ: наибольшее целое решение неравенства х=1
В общем виде уравнение квадратной параболы можно записать в следующем виде: , где q определяет ординату (т.е. значение по оси у) точки экстремума, -р определяет абсциссу (т.е. значение по оси х) точки экстремума, а k - это коэффициент, который показывает, насколько сжаты (k>1) или расширены (k<1) ветви заданной параболы относительно параболы с уравнением y=x². Положительный знак k говорит о том, что ветви параболы будут направлены вверх и экстремум является минимумом, а отрицательный знак k показывает, что ветви параболы направлены вниз и экстремум является максимумом. Фактически, k определяет точки, отличные от точки экстремума, через которую обязаны пройти ветви параболы.
В нашем случае вершина параболы (точка В) лежит на оси х и сдвинута относительно начала координат на +5. Т.е. мы сразу можем записать, что q=0, p=-5. Тогда искомая функция примет вид:
У нас имеется точка А(-2;2), координаты которой мы и подставим в полученную формулу для нахождения k:
Окончательно, уравнение параболы будет иметь следующий вид:
При желании, это уравнение можно привести к "классическому" виду:
2. Как было рассмотрено выше, экстремумы квадратичной функции находятся в точке с координатами (-p,q). В условии функции заданы в канонической форме y=ax²+bx+c, поэтому сначала найдем формулы, связывающие искомые p,q с известными a,b,c.
С этой целью выделим в уравнении y=ax²+bx+c полный квадрат:
Для решения поставленной задачи представляет интерес определение величины -p - абсциссы точки экстремума. Ордината, т.е. значение экстремума, будет найдена путем подстановки величины -p вместо х в исходное уравнение.