Если 2 стула дороже, чем один стол на 100 грн., то 4 стула дороже, чем два стола на 200 грн.
Пусть стол стоит х грн., тогда 3 стола стоят 3х грн., а 4 стула заменим двумя столами и 200 гривнами, тогда стоимость покупки из 3 столов и 4 стульев будет такой
3*х+(2*х+200)=4700
5х=4700-200
5х=4500
х=900, значит, один стол стоит 900 грн., тогда если к этой сумме добавить 100 грн. и разделить на два, получим цену стула, т.е. (900+100)/2=500
Значит, 500 грн. стоит стул.
традиционный.
цена стола х, цена стула у, отсюда система уравнений
2у-х=100
3х+4у=4700
Первое уравнение умножим на 3 и сложим со вторым. Получим
-3х+6у=300
3х+4у=4700
10у=5000, откуда у=5000/10
у=500, стул стоит 500 грн. , тогда стол стоит х=2у-100=2*500-100=900
Задание 3. Сумма чисел старого ряда равна 7 * 10 = 70. Новый ряд состоит из 10 + 2 = 12 чисел. Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75
Если 2 стула дороже, чем один стол на 100 грн., то 4 стула дороже, чем два стола на 200 грн.
Пусть стол стоит х грн., тогда 3 стола стоят 3х грн., а 4 стула заменим двумя столами и 200 гривнами, тогда стоимость покупки из 3 столов и 4 стульев будет такой
3*х+(2*х+200)=4700
5х=4700-200
5х=4500
х=900, значит, один стол стоит 900 грн., тогда если к этой сумме добавить 100 грн. и разделить на два, получим цену стула, т.е. (900+100)/2=500
Значит, 500 грн. стоит стул.
традиционный.
цена стола х, цена стула у, отсюда система уравнений
2у-х=100
3х+4у=4700
Первое уравнение умножим на 3 и сложим со вторым. Получим
-3х+6у=300
3х+4у=4700
10у=5000, откуда у=5000/10
у=500, стул стоит 500 грн. , тогда стол стоит х=2у-100=2*500-100=900
Стол стоит 900 грн.
Ранжированный ряд: 157, 160, 160, 161, 162, 162, 165, 165, 165, 165, 165, 168, 169, 170, 170, 170, 171, 173, 173, 174, 175, 177, 177, 182, 182, 186.
Средний рост: (157 + 160 + 160 ++ 186) : 26 ≈ 169
Мода ряда: 165
Медиана ряда: (170 + 175) : 2 = 172,5
Задание 2.
Среднее арифметическое: (100 000 + 4 * 20 000 + 20 * 10 000) : 25 = 15200
Мода ряда: 10 000
Медиана ряда: (10 000 + 10 000) : 2 = 10 000
В рекламных целях выгоднее всего использовать среднее арифметическое ряда.
Задание 3.
Сумма чисел старого ряда равна 7 * 10 = 70.
Новый ряд состоит из 10 + 2 = 12 чисел.
Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75