) 13 + 28х = 5х + 17 + 23х
28х - 5х - 23х = 17 - 13
28х - 28х = 4
0х = 4 - уравнение не имеет корней, так как при любом значении х, 0х = 0
2) 5 - 3х + 4 = 17х + 9 - 20х
- 3х - 17х + 20х = 9 - 5 - 4
- 20х + 20х = 9 - 9
0х = 0
х - любое число (от минус бесконечности до плюс бесконечности)
3) 3/4у + 2у + 5 = 2 3/4у + 4,1 + 0,9
3/4у + 2у - 2 3/4у = 4,1 + 0,9 - 5
2 3/4у - 2 3/4у = 5 - 5
0у = 0
у - любое число (от минус бесконечности до плюс бесконечности)
4) 9 - 16у = 20 - 31у+ 15у
- 16у + 31у - 15у = 20 - 9
0у = 11 - уравнение не имеет корней, так как при любом значении у, 0у = 0
ответ: 1); 4) - не имеют корней; 2); 3) - бесконечное множество корней.
Объяснение:
Вот это правильно
ответ: -1
Рекуррентное соотношение:
an+2=an+1-an
Показывает, что каждый следующий член последовательности, равен разности двух предыдущих, а значит эта последовательность имеет вид:
0,1,1,0,-1,-1,0,1,1..., то есть cпустя каждые 6-ть членов последовательность начинает повторятся, иначе говоря, период повторения равен 6.
Нам необходимо найти 101-й член последовательности.
Найдем остаток от деления 101 на 6:
101 = 6*16 + 5, то есть остаток 5, таким образом, нам нужно 5-е число в периоде: 0,1,1,0,-1,-1
Откуда:
a101 = -1
) 13 + 28х = 5х + 17 + 23х
28х - 5х - 23х = 17 - 13
28х - 28х = 4
0х = 4 - уравнение не имеет корней, так как при любом значении х, 0х = 0
2) 5 - 3х + 4 = 17х + 9 - 20х
- 3х - 17х + 20х = 9 - 5 - 4
- 20х + 20х = 9 - 9
0х = 0
х - любое число (от минус бесконечности до плюс бесконечности)
3) 3/4у + 2у + 5 = 2 3/4у + 4,1 + 0,9
3/4у + 2у - 2 3/4у = 4,1 + 0,9 - 5
2 3/4у - 2 3/4у = 5 - 5
0у = 0
у - любое число (от минус бесконечности до плюс бесконечности)
4) 9 - 16у = 20 - 31у+ 15у
- 16у + 31у - 15у = 20 - 9
0у = 11 - уравнение не имеет корней, так как при любом значении у, 0у = 0
ответ: 1); 4) - не имеют корней; 2); 3) - бесконечное множество корней.
Объяснение:
Вот это правильно
ответ: -1
Объяснение:
Рекуррентное соотношение:
an+2=an+1-an
Показывает, что каждый следующий член последовательности, равен разности двух предыдущих, а значит эта последовательность имеет вид:
0,1,1,0,-1,-1,0,1,1..., то есть cпустя каждые 6-ть членов последовательность начинает повторятся, иначе говоря, период повторения равен 6.
Нам необходимо найти 101-й член последовательности.
Найдем остаток от деления 101 на 6:
101 = 6*16 + 5, то есть остаток 5, таким образом, нам нужно 5-е число в периоде: 0,1,1,0,-1,-1
Откуда:
a101 = -1