1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
1) OA = OC = OB = a
Треугольники ОАВ, ОАС и ОВС - прямоугольные с равными катетами, значит они равны по двум катетам. Значит, равны и их гипотенузы:
АВ = АС = ВС.
Треугольник АВС равносторонний, значит его углы равны по 60°.
2) OA = OB = 6 см, OC=8см
ΔОАС = ΔОВС по двум катетам. По теореме Пифагора в ΔОАС:
АС = √(ОА² + ОС²) = √(36 + 64) = √100 = 10 см
ВС = АС = 10 см
ΔОАВ равнобедренный прямоугольный. По теореме Пифагора
АВ = √(ОА² + ОВ²) = √(36 + 36) = 6√2 см
ΔАВС равнобедренный. По теореме косинусов найдем угол АСВ:
cosACB = (CA² + CB² - AB²)/(2·CA·CB) = (100 + 100 - 72)/(2·10·10) =
= 128/200 = 0,64
∠ACB ≈ 50°
∠CAB = ∠CBA ≈ (180° - 50°)/2 ≈ 65°