В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
0Lvovich0
0Lvovich0
11.01.2022 00:18 •  Алгебра

Найдите площадь фигуры ограниченной и графиком функции y=x^2-6x+10, прямой y=-2+2x

Показать ответ
Ответ:
Vika15511
Vika15511
07.10.2020 22:22
Найдем сначала пределы интегрирования
х^2-6х+10=-2+2х.
х^2-8х+12=0.
х^2-6х-2х+12=0.
х(х-6)-2(х-6)=0.
(х-2)(х-6)=0.
Нижний предел х=2, верхний предел х=6.
Для нахождения площади искомой фигуры нужно найти интеграл $((-2-2х)-(х^2-6х+10))dx= -$х^2 dx +8$x dx -12$ dx = -x^3/3 + 4x^2 -12x = (-6^3/3 +4·6^2 - 12·6) - (-2^3/3 +4·2^2 -12·2)=-216/3 + 72 + 8/3 + 8=-208/3 + 80=(240-208)/3=32/3= 10 целых 2/3.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота