Площадь треугольника полупроизведение сторон и синус угла между ними S=0,5*a*b*sinx поскольку это равнобедренный треугольник, то стороны а и b одно и тоже плюс нам дан угол и площадь т.е. можно переписать формулу площади уже с известными нам величинами
значит боковые стороны равны 12 если в этом треугольнике провести высоту(биссектрису(медиану)), то получится два прямоугольных треугольника с углами 60,30,90 половина основания лежит против угла в 60 градусов, используем синус:
поскольку это половинка основания, то все основание будет в два раза больше итоговый ответ: стороны равны
Получаем 4 неравенства: 1) |x|>0 |x-1|>0 (x-2)(x-3)<=0; x1=2; x2=3; используя метод интервалов находим: x=[2;3] 2) |x|<0 |x-1|>0 (-x-2)(x-3)<=0; x1=-2; x2=3 используем тот же метод: x=(-беск;-2] и [3;+беск) 3) |x|>0 |x-1|<0 (x-2)(-x-1)<=0; x1=2; x2=-1; методом интервалов находим: x=(-беск;-1] и [2;+беск) 4) |x|<0 |x-1|<0 (-x-2)(-x-1)<=0; x1=-2; x2=-1 используем метод интервалов: x=[-2;-1] теперь обьеденим эти множетва и получим: x=[-2;-1] и [2;3] ответ: x принадлежит [-2;-1] и [2;3]
S=0,5*a*b*sinx
поскольку это равнобедренный треугольник, то стороны а и b одно и тоже
плюс нам дан угол и площадь
т.е. можно переписать формулу площади уже с известными нам величинами
значит боковые стороны равны 12
если в этом треугольнике провести высоту(биссектрису(медиану)), то получится два прямоугольных треугольника с углами 60,30,90
половина основания лежит против угла в 60 градусов, используем синус:
поскольку это половинка основания, то все основание будет в два раза больше
итоговый ответ: стороны равны
1) |x|>0 |x-1|>0
(x-2)(x-3)<=0;
x1=2; x2=3;
используя метод интервалов находим:
x=[2;3]
2) |x|<0 |x-1|>0
(-x-2)(x-3)<=0;
x1=-2; x2=3 используем тот же метод:
x=(-беск;-2] и [3;+беск)
3) |x|>0 |x-1|<0
(x-2)(-x-1)<=0;
x1=2; x2=-1;
методом интервалов находим:
x=(-беск;-1] и [2;+беск)
4) |x|<0 |x-1|<0
(-x-2)(-x-1)<=0;
x1=-2; x2=-1
используем метод интервалов:
x=[-2;-1]
теперь обьеденим эти множетва и получим:
x=[-2;-1] и [2;3]
ответ: x принадлежит [-2;-1] и [2;3]