В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
jsjdnnx
jsjdnnx
11.06.2022 14:12 •  Алгебра

Найдите площадь фигуры ограниченной линиями y=sinx y=0 x=п/4 x=п/2

Показать ответ
Ответ:
slv13
slv13
12.01.2024 11:21
Хорошо, давайте решим эту задачу вместе.

Нам нужно найти площадь фигуры, которую ограничивают линии y=sinx, y=0, x=п/4 и x=п/2.

Для начала, давайте нарисуем графики функций y=sinx и y=0 на графике с координатной плоскостью.
Нам нужно определить, какие интервалы x нам нужно рассмотреть для построения графика. Заметим, что у нас заданы границы x=п/4 и x=п/2. Также помним, что функция y=sinx повторяется через каждые 2п. Поэтому начнем с интервала от 0 до 2п, чтобы полностью охватить все значения x, которые нам интересны.

Для начала, нарисуем график функции y=sinx на интервале от 0 до 2п.
Построение графика функции y=sinx будет выглядеть следующим образом:

|
------ |
| ,"
---- | ," ,
|" ,
--- | ,
| |
--- | ,"
| ,
-- | ,"
|,"

Помните, что исходная функция y=sinx имеет период 2п, амплитуду 1 и смещена вверх на 1 единицу по оси y.

Следующим шагом нам нужно определить, какие части графика нас интересуют. Нам нужна область ограниченная осью x=п/4, осью x=п/2 и осью y=0.

У нас есть две части графика y=sinx, которые нас интересуют:

Первая часть - график y=sinx на интервале от 0 до п/4.
Вторая часть - график y=sinx на интервале от п/4 до п/2.

Давайте рассмотрим каждую часть по отдельности и найдем их площади.

Найдем площадь первой части фигуры, ограниченной линиями y=sinx, y=0 и x=п/4.

Для начала, найдем точки пересечения y=sinx и y=0. Это происходит, когда sinx равняется нулю.

Помните, что y=sinx пересекает ось X в точках, кратных пи.
То есть, чтобы найти точку пересечения нашей первой части фигуры, мы должны найти решение уравнения sinx=0 на интервале от 0 до п/4.

Синтаксический сахат avras ошибку при создании графика цикла но плохо отправлять команды на данной платформе
если Вы хотите я пришлю Вам это в виде кода пайтона

С учетом этого, мы можем продолжить и найти площадь первой части фигуры. Площадь этой части можно найти, используя определенный интеграл, так как здесь у нас идет непрерывная функция.

Если вы учите интегралы, вы можете выполнить следующий интеграл:
∫[0, п/4] sinx dx = [-cosx] |[0, п/4] = -cos(п/4) - (-cos0) = -cos(п/4) + 1

Перейдем ко второй части фигуры, ограниченной линиями y=sinx, y=0 и x=п/2.

Для начала, найдем точки пересечения y=sinx и y=0 на интервале от п/4 до п/2.
Мы знаем, что y=sinx пересекает ось X в точках, кратных пи.
Таким образом, чтобы найти точку пересечения нашей второй части фигуры, мы должны найти решение уравнения sinx=0 на интервале от п/4 до п/2.

Теперь мы можем найти площадь второй части фигуры, используя аналогичный метод:
∫[п/4, п/2] sinx dx = [-cosx]|[п/4, п/2] = -cos(п/2) - (-cos(п/4)) = -cos(п/2) + cos(п/4)

Итак, чтобы найти площадь всей фигуры, нам нужно сложить площади обеих частей.
Площадь всей фигуры = площадь первой части + площадь второй части

То есть, площадь всей фигуры = (-cos(п/4) + 1) + (-cos(п/2) + cos(п/4))

Можно складывать слагаемые:
Площадь всей фигуры = -cos(п/4) - cos(п/2) + 1 + cos(п/4)

Заметим, что cos(п/4) = √2/2 и cos(п/2) = 0
Таким образом, мы можем заменить значения и упростить выражение:
Площадь всей фигуры = -√2/2 - 0 + 1 + √2/2

Легко заметить, что -√2/2 и √2/2 взаимно уничтожают друг друга:
Площадь всей фигуры = 1

Итак, площадь фигуры, ограниченной линиями y=sinx, y=0, x=п/4 и x=п/2, равна 1.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота