составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз,
вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх.
Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный.
2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх,
вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.