Дана функция у = (x³ -6x² + 32)/(4 - x). Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8. График её - парабола ветвями вниз. Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы. Хо = -в/2а = -2/(2*(-1)) = 1. Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9. Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2. Второй ответ: а = 0.
Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8.
График её - парабола ветвями вниз.
Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы.
Хо = -в/2а = -2/(2*(-1)) = 1.
Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9.
Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2.
Второй ответ: а = 0.
t²-3t-4=0
D=9+16=25 > 0, значит 2 корня
t₁ = (3+5)/2=4
t₂ = (3-5)/2 = -1
сделаем обратную замену
cos x=4 - не подходит, так как E(y)= [-1;1] -область значений функции косинус
cos x=-1, x=π+2πn, n∈Z
2) 2 cos²x - 5sinx+1 =0
2(1-sin²x) -5sinx+1=0
2 - 2sin²x -5sinx+1=0
2sin²x+5sinx-3=0
введем замену sinx =t, тогда получим
2t²+5t-3=0
D=25+24=49 >0 - значит 2 корня
t₁ =(-5-7)/4=-3
t₂ =(-5+7)/4 = 1/2, введем обратную замену
sin x =-3 - не подходит, так как E(y)= [-1;1] -область значений функции синус
sinx = 1/2, х =π/6 + 2πn и x= 5π/6 + 2πn , где n∈Z