Автомобиль обычно доезжает от поселка до города со скоростью 60 км/ч. Когда он снизил скорость до 40 км/ч, оказалось, что путь занимает на 1 ч 30 мин больше чем обычно. Найдите расстояние от поселка до города.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние от посёлка до города.
х/60 - время при прежней скорости.
х/40 - время при сниженной скорости.
Разница 1,5 часа, уравнение:
х/40 - х/60 = 1,5
Умножить уравнение (все части) на 120, чтобы избавиться от дроби:
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
В решении.
Объяснение:
Автомобиль обычно доезжает от поселка до города со скоростью 60 км/ч. Когда он снизил скорость до 40 км/ч, оказалось, что путь занимает на 1 ч 30 мин больше чем обычно. Найдите расстояние от поселка до города.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние от посёлка до города.
х/60 - время при прежней скорости.
х/40 - время при сниженной скорости.
Разница 1,5 часа, уравнение:
х/40 - х/60 = 1,5
Умножить уравнение (все части) на 120, чтобы избавиться от дроби:
3*х - 2*х = 120*1,5
3х-2х=180
х=180 (км) - расстояние от посёлка до города.
Проверка:
180:60 = 3 (часа)
180:40 = 4,5 (часа)
Разница 1,5 часа, верно.