время(ч) скорость(км/ч) путь(км) по теч. 3 32 пр теч. 2 32 течение 3 лодка ? решение: s=v*t 1)32: 2=16 (км/ч)-скорость лодки против теч реки 2)16+3=19 (км/ч)-скорость лодки ответ: скорость лодки 19 км/ч
Напомним, что неравенства называются равносильными, если у них совпадают множества решений.
Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.
Напомним, что неравенства называются равносильными, если у них совпадают множества решений.
Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.
Вывод: неравенства равносильны при a≥2