D(y)=[-2;+∞)- область определения данной функции. Cоставим уравнение касательной к кривой в точке z y(z)=√(z+2); y`(x)=1/2√(x+2) y`(z)=1/2√(z+2) Уравнение у-у(z)=y`(z)(x-z) y-√(z+2)=(x-z)/2√(z+2) Найдем точки пересечения касательной с осями координат При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2) При у=0 x-z=-2(z+2) ⇒x=-z-4 Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)| Площадь прямоугольного треугольника находим по формуле как половину произведения катетов: S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2) S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2) S`(z)=0 3z+4=0 z=-4/3 y(-4/3)=√((-4/3)+2)=1/√3 О т в е т.(-4/3; 1/√3)
На первую решение: Возьмем стороны прямоугольника за А и В, тогда периметр равен 2А+2В=22, а площадь - А*В=24. Выразим отсюда А=24/В. Подставим в периметр, тогда имеем 2*24/В+2В=22. Имеем квадратное уравнение: 2В^2-22В+48=0 Д=100 Корнями являются числа 3 и 8, это сторона В. Отсюда получим, что сторона А может быть равна 8 или 3 соответственно. На вторую решение: Пусть Х-собственная скорость катера. Тогда скорости по течению и против будут равны Х+3 и Х-3 соответственно. Отсюда получаем, что время движения катера по течению и против него равно 5/(Х+3)+12/(Х-3), и равно времени движения в стоячей воде с собственной скоростью 18/Х. Приравниваем. 5/(х+3)+12/(х-3)=18/х. Получается квадратное уравнение х^2-21х-162=0. Два корня являются решениями, но один из них отрицательный, следовательно х=27. ответ: собственная скорость катера - 27 км/ч.
Cоставим уравнение касательной к кривой в точке z
y(z)=√(z+2);
y`(x)=1/2√(x+2)
y`(z)=1/2√(z+2)
Уравнение
у-у(z)=y`(z)(x-z)
y-√(z+2)=(x-z)/2√(z+2)
Найдем точки пересечения касательной с осями координат
При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2)
При у=0 x-z=-2(z+2) ⇒x=-z-4
Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)|
Площадь прямоугольного треугольника находим по формуле как половину произведения катетов:
S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2)
S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2)
S`(z)=0
3z+4=0
z=-4/3
y(-4/3)=√((-4/3)+2)=1/√3
О т в е т.(-4/3; 1/√3)
Возьмем стороны прямоугольника за А и В, тогда периметр равен 2А+2В=22, а площадь - А*В=24. Выразим отсюда А=24/В. Подставим в периметр, тогда имеем 2*24/В+2В=22. Имеем квадратное уравнение: 2В^2-22В+48=0 Д=100
Корнями являются числа 3 и 8, это сторона В. Отсюда получим, что сторона А может быть равна 8 или 3 соответственно.
На вторую решение:
Пусть Х-собственная скорость катера. Тогда скорости по течению и против будут равны Х+3 и Х-3 соответственно. Отсюда получаем, что время движения катера по течению и против него равно 5/(Х+3)+12/(Х-3), и равно времени движения в стоячей воде с собственной скоростью 18/Х. Приравниваем. 5/(х+3)+12/(х-3)=18/х.
Получается квадратное уравнение х^2-21х-162=0. Два корня являются решениями, но один из них отрицательный, следовательно х=27. ответ: собственная скорость катера - 27 км/ч.