Велосипедист должен был преодолеть расстояние в 30 км. Но он задержался с выездом на полчаса, поэтому что бы приехать вовремя, он двигался со скоростью на 3 км в час больше чем планировал. С какой скоростью он двигался? Запишите уравнение и ответ.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста вначале.
х+3 - скорость велосипедиста увеличенная.
30/х - время велосипедиста запланированное.
30/(х+3) - время велосипедиста фактически.
По условию задачи разница во времени 0,5 часа, уравнение:
30/х - 30/(х+3) = 0,5
Общий знаменатель х(х+3), надписываем над числителями дополнительные множители, избавляемся от дроби:
(х+3)*30 - х*30 = х(х+3)*0,5
Раскрыть скобки:
30х+90-30х=0,5х²+1,5х
-0,5х²-1,5х+90=0/-1
0,5х²+1,5х-90=0
Разделим уравнение на 0,5 для упрощения:
х²+3х-180=0, квадратное уравнение, ищем корни:
D=b²-4ac = 9+720=729 √D= 27
х₁=(-b-√D)/2a
х₁=(-3-27)/2
х₁= -30/2= -15, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-3+27)/2
х₂=24/2
х₂=12 (км/час) скорость велосипедиста вначале.
12+3=15 (км/час) скорость велосипедиста увеличенная.
1) Неправильная дробь. Выделяем целую часть.
Делим "углом"
x³ на х²-2х-3
получим
х+2+(7х+6)/(x²-2x-3)
Применяем свойство интегрирования: интеграл от суммы равен сумме интегралов.
=∫(х+2)dx+∫(7x+6)dx/(x²-2x-3)
Во втором интеграле выделяем полный квадрат
x²-2x-3=(х-1)²-4
и замену переменной
х-1=t
x=t+1
dx=dt
=∫(x+2)dx+∫(7t+3)dt/(t²-4)=(x²/2)+2x+(7/2)∫d(t²-4)/(t²-4)+3∫dt/(t²-4)=
=(x²/2)+2x+(7/2)ln|t²-4|+3/4ln|(t-2)/(t+2)+C=
=(x²/2)+2x+(7/2)ln|x²-2x-3|+3/4ln|(x-3)/(x+1)+C - о т в е т.
2
=(1/4)∫√(4х-1)d(4x-1)=(1/4)∫(4х-1)¹/²d(4x-1)=
(1/4)·(4х-1)³/²/(3/2) + С=(1/6)√(4х-1)³+С=(1/6)(4x-1)·√(4x-1)+C
3.
=(1/9)∫∛(9x-1)d(9x-1)=(1/9)∫(9x-1)¹/³d(4x-1)=(1/9)(9x-1)⁴/³/(4/3) + C=
=(1/12)(9x-1)·∛(9x-1) + C
15 (км/час) скорость велосипедиста увеличенная.
Объяснение:
Велосипедист должен был преодолеть расстояние в 30 км. Но он задержался с выездом на полчаса, поэтому что бы приехать вовремя, он двигался со скоростью на 3 км в час больше чем планировал. С какой скоростью он двигался? Запишите уравнение и ответ.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста вначале.
х+3 - скорость велосипедиста увеличенная.
30/х - время велосипедиста запланированное.
30/(х+3) - время велосипедиста фактически.
По условию задачи разница во времени 0,5 часа, уравнение:
30/х - 30/(х+3) = 0,5
Общий знаменатель х(х+3), надписываем над числителями дополнительные множители, избавляемся от дроби:
(х+3)*30 - х*30 = х(х+3)*0,5
Раскрыть скобки:
30х+90-30х=0,5х²+1,5х
-0,5х²-1,5х+90=0/-1
0,5х²+1,5х-90=0
Разделим уравнение на 0,5 для упрощения:
х²+3х-180=0, квадратное уравнение, ищем корни:
D=b²-4ac = 9+720=729 √D= 27
х₁=(-b-√D)/2a
х₁=(-3-27)/2
х₁= -30/2= -15, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-3+27)/2
х₂=24/2
х₂=12 (км/час) скорость велосипедиста вначале.
12+3=15 (км/час) скорость велосипедиста увеличенная.