1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168
3x = 12
x = 4
2)12 - 2x = - 10
- 2x = - 22
x = 11
3)2x + 3 = 10
2x = 7
x = 3,5
4) 14x - 7 = 28
14x = 35
x = 2,5
5) (x - 3)(15 - x) = 0
15x - x² - 45 + 3x = 0
- x² + 18x - 45 = 0
x² - 18x + 45 = 0
D = b² - 4ac = 324 - 4×45 = 324 - 180 = √144= 12
x₁ = 18 + 12/2 = 15
x₂ = 18 - 12/2 = 3
6) (2x - 20)(3 + 3x) = 0
6x + 6x² - 60 - 60x = 0
6x² - 54x - 60 = 0
D = 2916 - 4×6 × ( - 60) = 2916 + 1440 = 4356
x₁ = 54 + 66/ 12 = 10
x₂ = 54 - 66/12 = - 1
7)( 12 - 3x)(25 - 5x) =0
300 - 60x - 75x + 15x² = 0
15x² - 135x + 300 = 0
D = 18225 - 4 × 15 × 300 = 18225 - 18000 = √225 = 15
x₁ = 135 + 15/30 = 5
x₂ = 135 - 15/30 = 4
1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168