Их площади относятся как квадраты коэффициентов подобия.
Размеры светлого треугольника: основание равно 1-(-1) = 2, высота равна 2-0 = 2. Его площадь S1 = (1/2)2*2 = 2 кв.ед.
Треугольник, состоящий из светлого и закрашенной фигуры, имеет высоту, равную 2-(-1) = 3.
То, что они подобны видно по рисунку - основания треугольников параллельны. То есть они попадают под следствие: прямая, пересекающая треугольник и параллельная стороне треугольника, отсекает от этого треугольника подобный треугольник.
Коэффициент подобия определяем по соотношению высот и он равен 3/2.
Речь идёт о площадях подобных треугольников.
Их площади относятся как квадраты коэффициентов подобия.
Размеры светлого треугольника: основание равно 1-(-1) = 2, высота равна 2-0 = 2. Его площадь S1 = (1/2)2*2 = 2 кв.ед.
Треугольник, состоящий из светлого и закрашенной фигуры, имеет высоту, равную 2-(-1) = 3.
То, что они подобны видно по рисунку - основания треугольников параллельны. То есть они попадают под следствие: прямая, пересекающая треугольник и параллельная стороне треугольника, отсекает от этого треугольника подобный треугольник.
Коэффициент подобия определяем по соотношению высот и он равен 3/2.
Площадь большего треугольника S2 = S1*(3/2)² = 2*(9/4) = 9/2 кв.ед.
ответ: S3 = S2 - S1 = (9/2) - 2 = 5/2 кв.ед.
|2x+4,4|-3=|2x+1,4|
нули модулей x = -2.2 x = -0.7
раскрытие модулей
|2x+4,4| |2x+1,4|
x < -2.2 -(2x + 4.4) -(2x + 1.4)
-2.2 <=x <= -0.7 (2x + 4.4) -(2x + 1.4)
x > -0.7 (2x + 4.4) (2x + 1.4)
1. x < -2.2
-(2x + 4.4) - 3 = -(2x + 1.4)
-2x - 4.4 - 3 = -2x - 1.4
-7,4 = -1.4
x ∈ ∅
2. -2.2 <=x < -0.7
(2x + 4.4) - 3 = -(2x + 1.4)
2x + 1.4 = -2x - 1.4
4x = -2.8
x = -0.7
3. x > -0.7
(2x + 4.4) - 3 = (2x + 1.4)
2x + 1.4 = 2x + 1.4
0 = 0
x > -0.7
ответ x ∈ [-0.7, +∞)