Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.
Площадь основания тортика радиуса R:
Тогда, площадь основания одного Машиного куска:
Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.
Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:
Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:
Площадь прямоугольного треугольника:
Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:
Отсюда площадь основания кусочка Даши:
По условию куски Маши и Даши должны быть одинаковы. значит:
Для решения уравнения построим график в Microsoft Excel (картинка).
По графику определим, что равенство выполняется при .
График при напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.
Действительно, можно считать, что рассматриваемый угол α мал. Тогда: в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:
Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:
По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:
В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.
Вернемся к полученному ранее уравнению:
Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида:
Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.
Площадь основания тортика радиуса R:
Тогда, площадь основания одного Машиного куска:
Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.
Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:
Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:
Площадь прямоугольного треугольника:
Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:
Отсюда площадь основания кусочка Даши:
По условию куски Маши и Даши должны быть одинаковы. значит:
Для решения уравнения построим график в Microsoft Excel (картинка).
По графику определим, что равенство выполняется при .
График при напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.
Действительно, можно считать, что рассматриваемый угол α мал. Тогда: в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:
Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:
По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:
В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.
Вернемся к полученному ранее уравнению:
Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида:
1) Линейной функцией называется функция вида y = kx + b,
где k – угловой , b – свободный член , x – независимая переменная.
Примеры линейных функций:
у = 3х ,
у = х +2
у = 6х - 5
у = х,
у = - 1/2 х +10
у = - 0,3 х - 1
Графиком линейной функции является прямая.
2) у=х-4
Это линейная функция. Графиком данной функции является прямая.
Для построение прямой необходимо найти две точки.Находим:
если х= 3, то у= 3-4 = -1
если х= 2, то у = 2-4 = -2 (лучше найти три точки ,третью для проверки: х= 0,у= -4 ).
Отмечаем точки на графике,соединяем,строим график.