Может показаться, что это задача на линейное программирование, но это не так. Переменных больше, чем уравнений, и мы не можем из условий задачи найти производительности тракторов или полное время работы.
Однако, в момент времени t все тракторы сделали одинаковую работу, следовательно, и после t им осталось сделать одинаковую работу.
До момента t трактор C затратил на 20 минут времени меньше, чем B, а после момента t он затратил на 12 минут меньше. Значит, объемы сделанной работы до момента t и после соотносятся как 20/12 = 5/3
Тогда, зная, что до момента t первый трактор работал дольше на 30 минут, чем второй, можно вычислить, что после момента t первый трактор работал на 30 * 3/5 = 18 минут больше, чем второй.
Однако, в момент времени t все тракторы сделали одинаковую работу, следовательно, и после t им осталось сделать одинаковую работу.
До момента t трактор C затратил на 20 минут времени меньше, чем B, а после момента t он затратил на 12 минут меньше.
Значит, объемы сделанной работы до момента t и после соотносятся как 20/12 = 5/3
Тогда, зная, что до момента t первый трактор работал дольше на 30 минут, чем второй, можно вычислить, что после момента t первый трактор работал на 30 * 3/5 = 18 минут больше, чем второй.
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел равна 9. Их четыре.
Следовательно, искомая вероятность Р(А)= 4/36 = 1/9
2) При бросании двух игральных кубиков могут выпасть следующие варианты:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел меньше семи.
Их пятнадцать.
Следовательно, искомая вероятность Р(В)=15/36=5/12