Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24