Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
Решаем методом подстановки
Выражаем х из первого уравнения:
х-у=1
х=1+у
Далее подставляем х=1+у во 2е уравнение:
1+у-4у^2=1 решаем как обычное уравнение
у-4у^2=0
у(1-4у)=0
у=0 или 1-4у=0 (тут "или" должно быть, можно заменить на квадратную скобку, но проще писать так)
Далее решаем уравнение: 1-4у=0
-4у=-1
у=-1/-4
у=0,25 или оставляешь дробью: 1/4
Находим х по этой подстановке: х=1+у
х=1+0=1 или х=1+0,25=1,25
ответ: у=0; 0,25 х=1; 1,25