Найдите радианную меру и укажите в какой четверти он находится а) 120 градусов б) -260 градусов Найдите градусную меру углов и укажите в какой четверти он находится 19П4
а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
Пусть ширина листа (сторона квадрата) равна b=х см. После того, как от прямоугольного листа картона отрезали квадрат, длина оставшегося прямоугольника стала равна a=16-х см. Площадь прямоугольника равна: S=a*b=60 см² Составим и решим уравнение: х(16-х)=60 16х-х²=60 х²-16х+60=0 D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4) х₁= = = 10 х₂= = = 6 ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета: х²-16х+60=0 х₁+х₂=16 х₁*х₂=60 х₁=10 х₂=6
Проверим: Ширина листа равна 10 см, длина 16 см. Вырезанный квадрат со стороной а=10 см. Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см. Вырезанный квадрат со стороной а=6 см. Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
y =∛( (x²-5x +4) /(x-4) ) ;
т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то
y =∛( (x²-5x +4) /(x-4) )
ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * *
(точка с абсциссой x = 4 будет выколота на графике функции )
y = ∛ (x -1) , x ≠ 4 .
---
Пересечение с координатными осями :
В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy)
В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox)
Если x → -∞ , y → -∞
Если x → ∞ , y → ∞
б)
y = ((x^2-x-6)/(x-3)) ^(1/4)
y =( (x-3)(x+2) / x-3) ) ^(1/4) ;
y = (x+2) /( x-3) /(x - 3) ^(1/4)
ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
точка с абсциссой x = 3 будет выколота на графике функции
y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
Пересечение с координатными осями :
(0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2
(-2 ; 0) c осью ординат
График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле
,
Удачи Вам!
Площадь прямоугольника равна: S=a*b=60 см²
Составим и решим уравнение:
х(16-х)=60
16х-х²=60
х²-16х+60=0
D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4)
х₁= = = 10
х₂= = = 6
ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета:
х²-16х+60=0
х₁+х₂=16
х₁*х₂=60
х₁=10
х₂=6
Проверим:
Ширина листа равна 10 см, длина 16 см.
Вырезанный квадрат со стороной а=10 см.
Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см.
Вырезанный квадрат со стороной а=6 см.
Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².