Найдите радиус кривизны траектории в данной точке R, если центростремительное ускорение определяется по формуле A=W в квадрате умножить на R, угловая скорость этого движения относительно центра кривизны траектории W=3c-1(степень), a=81м/с( в квадрате).
В решении.
Объяснение:
Решить квадратное уравнение используя теорему Виета и разложить по формуле квадратного трёхчлена.
Решить:
11) х² - 5х + 6 = 0
По теореме Виета:
х₁ + х₂ = 5;
х₁ * х₂ = 6;
х₁ = 3; х₂ = 2.
12) х² + 5х + 6 = 0
По теореме Виета:
х₁ + х₂ = -5;
х₁ * х₂ = 6;
х₁ = -3; х₂ = -2.
13) х² - 8х + 12 = 0
По теореме Виета:
х₁ + х₂ = 8;
х₁ * х₂ = 12;
х₁ = 4; х₂ = 2.
14) х² - 9х + 18 = 0
По теореме Виета:
х₁ + х₂ = 9;
х₁ * х₂ = 18;
х₁ = 6; х₂ = 3.
15) х² - 7х + 10 = 0
По теореме Виета:
х₁ + х₂ = 7;
х₁ * х₂ = 10;
х₁ = 5; х₂ = 2.
Разложить:
11) х² - 5х + 6;
(х² - 2*х*2,5 + 2,5²) - 2,5² + 6 =
= (х² - 2*х*2,5 + 2,5²) - 6,25 + 6 =
= (х - 2,5)² -0,25;
12) х² + 5х + 6;
(х² + 2*х*2,5 + 2,5²) - 2,5² + 6 =
= (х² + 2*х*2,5 + 2,5²) - 6,25 + 6 =
= (х + 2,5)² - 0,25;
13) х² - 8х + 12;
(х² - 2*х*4 + 4²) - 4² + 12 =
= (х² - 2*х*4 + 4²) - 16 + 12 =
= (х - 4)² - 4;
14) х² - 9х + 18;
(х² - 2*х*4,5 + 4,5²) - 4,5² + 18 =
= (х² - 2*х*4,5 + 4,5²) - 20,25 + 18 =
= (х - 4,5)² - 2,25;
15) х² - 7х + 10;
(х² - 2*х*3,5 + 3,5²) - 3,5² + 10 =
= (х² - 2*х*3,5 + 3,5²) - 12,25 + 10 =
= (х - 3,5)² - 2,25.
Відповідь:
Пояснення:
1. f(x)=4+x^5
f'(x)=x^4>=0 для всех х → во всей области определения f(x) возрастает, так как производная на всей области больше 0, не отрицательная
2. f(x)= -6/x+9 области определения f(x) : xєR & x≠0
f'(x)=6/x^2 >0
Так как производная на всей области определения >0, то функция возрастающая
1). f(x)=4-x^3 области определения f(x) : xєR
f'(x)=-3х^2<0
Так как производная на всей области определения <0, то функция убивающая
2) f(x)=5/x-11 области определения f(x) : xєR & x≠0
f'(x)= -5/x^2 <0
Так как производная на всей области определения <0, то функция убивающая