На рисунке 1 показана парабола y=x²-4x-5 чтобы построить симметричную ей нужно знать за что отвечает каждый коэффициент a=1 , b= -4 , c= -5
1)Коэффициент а влияет на направление ветвей параболы а > 0 – ветви вверх а < 0 – ветви вниз 2)Коэффициент b влияет на расположение вершины параболы. Если b = 0 - вершина лежит на оси Оу Если b>0 - парабола в левой части Если b<0 - парабола в правой части 3)Коэффициент с показывает точку пересечения с осью Оу
теперь анализируем нашу параболу -ветви вверх -вершина 2; -9 -пересечение с Оу 0; -5
Чтобы построить симметричную нужно сделать второй и третий коэффициент положительными ответ : y=x²+4x+5
Примем одну сторону как "х", другую как "у". Составляем систему уравнений (цифры с двоеточием заменить фигурной скобкой)
1: х - у = 14
2: х^2 + y^2 = 26^2
Получаем, что:
х = (14 + у)
(у^2 + 28y + 196) + y^2 = 676
Приводим подобные:
2y^2 + 28y - 480 = 0
Сокращаем на "2":
y^2 + 14y - 240 = 0
Далее решаем по теореме Виета для квадратных уравнений, либо через дискриминант (лично я предпочитаю второе):
a = 1, b = 14, c = -240
D = b^2 - 4ac
D = 14*14 + 4*240 = 1156
√D = 34
у1 = -b+√D/2a = -14+34/2 = 10 см.
y2 = -b-√D/2a = -14-34/2 = -24 см (таких сторон прямоугольников не существует в природе, вычеркиваем =)).
Подставляем в первое уравнение х = (14 + у) и... о чудо!:
14+10 = 24 см.
ответ: Большая сторона данного прямоугольника равна 24 сантиметрам.
чтобы построить симметричную ей нужно знать за что отвечает каждый коэффициент
a=1 , b= -4 , c= -5
1)Коэффициент а влияет на направление ветвей параболы
а > 0 – ветви вверх
а < 0 – ветви вниз
2)Коэффициент b влияет на расположение вершины параболы.
Если b = 0 - вершина лежит на оси Оу
Если b>0 - парабола в левой части
Если b<0 - парабола в правой части
3)Коэффициент с показывает точку пересечения с осью Оу
теперь анализируем нашу параболу
-ветви вверх
-вершина 2; -9
-пересечение с Оу 0; -5
Чтобы построить симметричную нужно
сделать второй и третий коэффициент положительными
ответ : y=x²+4x+5