По условию нам даны координаты двух точек: А(-2 и 4)
Подставим все известные нам координаты к графику функции, заданной формулой у=2х+6. Подставили и решили, в ответе получили 0, но в условии нам даны совершенно другие координаты, и значит, что эти координаты не принадлежат графику функции, заданной формулой у=2х+6.
По условию нам даны координаты двух точек: В(1;8)
Подставим все известные нам координаты к графику функции, заданной формулой у=2х+6. Подставили и решили, в ответе получили 8, как по условии, и значит, что эти координаты принадлежат графику функции, заданной формулой у=2х+6.
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
А(-2;4)
у=kx+b
y=2x+6
4=2×(-2)+4=0, нет не принадлежит.
4=2×(-2)+4=0≠4.
В(1;8)
у=kx+b
y=2x+6
8=2×1+6=8, да принадлежит.
Пошаговое объяснение:
По условию нам даны координаты двух точек: А(-2 и 4)
Подставим все известные нам координаты к графику функции, заданной формулой у=2х+6. Подставили и решили, в ответе получили 0, но в условии нам даны совершенно другие координаты, и значит, что эти координаты не принадлежат графику функции, заданной формулой у=2х+6.
По условию нам даны координаты двух точек: В(1;8)
Подставим все известные нам координаты к графику функции, заданной формулой у=2х+6. Подставили и решили, в ответе получили 8, как по условии, и значит, что эти координаты принадлежат графику функции, заданной формулой у=2х+6.
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при .
Поэтому .
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае .
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .