В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
alexkis228vk
alexkis228vk
12.09.2020 18:40 •  Алгебра

Найдите: sin^2 a+cos^4 a, если sin a+cos a=p

Показать ответ
Ответ:
magamusaev201
magamusaev201
23.07.2020 19:27
Sin a + cos a = p
Возводим в квадрат
(sin a + cos a)^2 = p^2
Раскрываем скобки
sin^2 a + cos^2 a + 2sin a*cos a = 1 + sin 2a = p^2
Отсюда
sin 2a = p^2 - 1
cos 2a = √(1 - sin^2 2a) = √(1 - (p^2 - 1)^2) = √(1 - (p^4 - 2p^2 + 1)) =
= √(2p^2 - p^4) = p*√(2 - p^2)
По формуле косинуса двойного аргумента
cos 2a = 2cos^2 a - 1 = 1 - 2sin^2 a
cos^2 a = (cos 2a + 1)/2; sin^2 a = (1 - cos 2a)/2
Подставляем
sin^2 a + cos^4 a = (1 - cos 2a)/2 + (cos 2a + 1)^2/4 =
= (1 - p*√(2 - p^2))/2 + (p*√(2 - p^2) + 1)^2/4
При желании можешь раскрыть скобки и упростить
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота