В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
polina2006200
polina2006200
16.11.2021 13:13 •  Алгебра

Найдите sin 2a и cos 2a если cos a 24/25
3п/2<а<2п​

Показать ответ
Ответ:
sirzikova
sirzikova
06.04.2021 10:36

Объяснение:

cos\alpha =\frac{24}{25} \ \ \ \ \frac{3\pi }{2}

cos(2\alpha )=cos^2\alpha-sin^2\alpha =(\frac{24}{25})^2-(-\frac{7}{25})^2=\frac{576}{625}-\frac{49}{625}=\frac{527}{625}.

0,0(0 оценок)
Ответ:
бекзат2008
бекзат2008
06.04.2021 10:36

α - угол четвёртой четверти, значит Sinα < 0 .

Cos\alpha=\frac{24}{25}\\\\Sin\alpha=-\sqrt{1-Cos^{2}\alpha} =-\sqrt{1-(\frac{24}{25})^{2}}=-\sqrt{1-\frac{576}{625} }=-\sqrt{\frac{49}{625} }=-\frac{7}{25}\\\\Sin2\alpha=2Sin\alpha Cos\alpha=2*(-\frac{7}{25})*\frac{24}{25}=-\frac{336}{625}\\\\\boxed{Sin2\alpha=-\frac{336}{625}}\\\\\\Cos2\alpha =2Cos^{2}\alpha-1=2*(\frac{24}{25})^{2}-1=2*\frac{576}{625}-1=\frac{1152}{625}-1=\frac{527}{625}\\\\\boxed{Cos2\alpha=\frac{527}{625}}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота