Объяснение: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(24−4)=80 штук) существует ровно передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅80+4⋅4=336.
4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 80 штук, и вклад от них равен 80⋅6=480.
5. Из остальных клеток, очевидно, шахматный конь может перейти в новые и это максимально возможное число Поскольку оставшихся клеток ровно (24−4)2=400 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅400=3200.
6. Суммируя значения, записанные в клетках доски, получим
1. а)=b²-3b+8b-24=b²+5b-24; б) =а³-6а²+2а+4а²-24а+8=а³-2а²-22а+82. а)=(х-у)(а-5); б)=а(5+d)-b(5+d)=(5+d)(a-b)3.=mn(m-n)-(m-n)(m+n)(2m+n)=(m-n)(mn-(m+n)(2m+n))=(m-n)(mn-2m²-mn-2mn-n²)=(m-n)(-2m²-2mn-n²)=(m-n)×(-2(m²+mn+n²))=-2(m³-n³)=-2m³+2n³4.расскрываем скобки: b²-3b-18=b²-6b+3b-18; b²-3b-18=b²-3b-18(левая и правая часть тождества равны,значит тождество доказано)5 ширина-х,тогда длина -3х,ширина после увеличения х+3,длина после увеличения 3х+2.площадь S=х×3х=3х²,площадь после увеличения 3х²+72.Составим ур-е: (х+3)(3х+2)=3х²+72; 3х²+2х+9х+6=3х²+72; 3х²+11х-3х²=72-6; 11х=66; х=6(м)-ширина, длина 6×3=18(м)
ответ:4048
Объяснение: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(24−4)=80 штук) существует ровно передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅80+4⋅4=336.
4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 80 штук, и вклад от них равен 80⋅6=480.
5. Из остальных клеток, очевидно, шахматный конь может перейти в новые и это максимально возможное число Поскольку оставшихся клеток ровно (24−4)2=400 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅400=3200.
6. Суммируя значения, записанные в клетках доски, получим
8+24+336+480+3200=4048.