Пусть скорость первого автомобиля x км/ч, а второго x + 20 км/ч.
За один час первый автомобиль проедет: x · 1 = x км, значит за то время, за которое второй автомобиль проедет 120 км, первый автомобиль проедет: 120 - x
Составим уравнение:
( 120 - x ) ÷ x = 120 ÷ ( x + 20 )
( 120 - x ) · ( x + 20 ) = 120x
120x - x² + 2400 - 20x - 120x = 0
x² - 20x + 2400 = 0
D = 400 + 9600 = 10000
x₁ = 20 + 100 ÷ ( - 2 ) = 120 ÷ ( - 2 ) = - 60 ( но это не подходит по условию задачи )
x₂ = 20 - 100 ÷ ( - 2 ) = - 80 ÷ ( - 2 ) = 40 км/ч - скорость первого автомобиля
1) 40 + 20 = 60 ( км/ч ) - скорость второго автомобиля
Пусть скорость первого автомобиля x км/ч, а второго x + 20 км/ч.
За один час первый автомобиль проедет: x · 1 = x км, значит за то время, за которое второй автомобиль проедет 120 км, первый автомобиль проедет: 120 - x
Составим уравнение:
( 120 - x ) ÷ x = 120 ÷ ( x + 20 )
( 120 - x ) · ( x + 20 ) = 120x
120x - x² + 2400 - 20x - 120x = 0
x² - 20x + 2400 = 0
D = 400 + 9600 = 10000
x₁ = 20 + 100 ÷ ( - 2 ) = 120 ÷ ( - 2 ) = - 60 ( но это не подходит по условию задачи )
x₂ = 20 - 100 ÷ ( - 2 ) = - 80 ÷ ( - 2 ) = 40 км/ч - скорость первого автомобиля
1) 40 + 20 = 60 ( км/ч ) - скорость второго автомобиля
ответ: 40 км/ч, 60 км/ч.
Удачи! : )
f(x) = -x^4/4 - x^3/3 + 3x + 1
f ' (x) = -x^3 - x^2 + 3 = 0
Корни, очевидно, иррациональные, найдем примерно подбором.
f ' (0) = 3 > 0
f ' (-1) = 1 - 1 + 3 = 3 > 0
f ' (-2) = 8 - 4 + 3 = 7 > 0
Брать x < -2 бессмысленно, дальше все значения f ' (x) > 0
f ' (1) = -1 - 1 + 3 = 1 > 0
f ' (2) = -8 - 4 + 3 = -9 < 0
Единственный экстремум (максимум) находится на отрезке (1; 2).
Можно уточнить
f ' (1,2) = -(1,2)^3 - (1,2)^2 + 3 = -0,168 < 0
f ' (1,18) = -(1,18)^3 - (1,18)^2 + 3 = -0,035 < 0
f ' (1,17) = -(1,17)^3 - (1,17)^2 + 3 = 0,0295 > 0
f ' (1,175) = -(1,175)^3 - (1,175)^2 + 3 = -0,003 ~ 0
x ~ 1,175; f(x) ~ -(1,175)^4/4 - (1,175)^3/3 + 3(1,175) + 1 ~ 3,5077
ответ: максимум: (1,175; 3,5077); минимума нет.