1) Найдём ∠АВС. Он будет равен 180° - 80° = 100°. 2) Теперь нам нужно вычислить чему равны углы при основании равнобедренного ΔАВС (∠ВАС и ∠ВСА). Мы знаем что они равны. Мы знаем, что сумма углов в треугольнике равна 180°. Найдём угол при основании равнобедренного треугольника: Обозначим угол при основании буквой А для удобства. Значит 2а = 180° - 100° 2а = 80° а = 40° Угол при основании треугольника АВС равен 42°. 3) Зная ∠ВАС(40°) находим ∠ВАМ(40°:2=20°) 4) Зная величины двух углов ΔВАМ вычислим величину ∠АМВ: 180° - 100° - 20°= 60° ответ: ∠АМВ = 60°
Нам нужно доказать что одно число делиться на другое. Что из себя представляет действие деления? Это значит разложить число на два множителя, одно из которых - делитель а другое - частное. Т.е. Если число 156 делиться на 2, то его можно поделить на множители: 156:2=78 Значит раскладываем 156 на 2 и 78. Так же в свою очередь можно разложить и 78: 78=2*39 А это значит что и число 156 можно представить в виде: 156=2*2*39 отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика. Теперь рассмотрим наше число. Разложим по формуле как сумма кубов: Сама формула: В нашем случае:
И давайте посмотрим на первый множитель: 36+63=99 А 99 отлично делиться на 11: 99:11=9 А это значит, что данное число () без проблем делиться на 11.
2) Теперь нам нужно вычислить чему равны углы при основании равнобедренного ΔАВС (∠ВАС и ∠ВСА). Мы знаем что они равны.
Мы знаем, что сумма углов в треугольнике равна 180°.
Найдём угол при основании равнобедренного треугольника:
Обозначим угол при основании буквой А для удобства. Значит
2а = 180° - 100°
2а = 80°
а = 40°
Угол при основании треугольника АВС равен 42°.
3) Зная ∠ВАС(40°) находим ∠ВАМ(40°:2=20°)
4) Зная величины двух углов ΔВАМ вычислим величину ∠АМВ:
180° - 100° - 20°= 60°
ответ: ∠АМВ = 60°
156:2=78
Значит раскладываем 156 на 2 и 78.
Так же в свою очередь можно разложить и 78:
78=2*39
А это значит что и число 156 можно представить в виде:
156=2*2*39
отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика.
Теперь рассмотрим наше число. Разложим по формуле как сумма кубов:
Сама формула:
В нашем случае:
И давайте посмотрим на первый множитель:
36+63=99
А 99 отлично делиться на 11:
99:11=9
А это значит, что данное число () без проблем делиться на 11.