4. Промежутки знакопостоянства при х ∈(0;1) F(x)<0; при х ∈(1;+∞) F(x)>0
5. Функция непериодическая.
6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.
7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.
8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.
9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4
10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.
Вариационный ряд - 2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5
Выборка:40
Варианта 2 - n=14
Варианта 3 - n=19
Вырианта 4 - n=5
Варианта 5 - n=2
Абсолютная частота варианты 3 n=19
Относительная частота варианты3 v=47.5%
Абсолютная частота варианты 4 n=5
Относительная частота варианты 4 v=12.5%
Таблица во вложении
1.D(F)=[0;+∞)
1.Е(F)=[0;+∞)
3. Нули функции x-√x=0; √х*(√x-1)=0; x=0 ;x=1.
4. Промежутки знакопостоянства при х ∈(0;1) F(x)<0; при х ∈(1;+∞) F(x)>0
5. Функция непериодическая.
6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.
7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.
8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.
9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4
10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.
График функции см. ниже.