1. Итак, нам нужно понять какая эта функция! Для этого Вспомним, что функция f(x )-называется четной( нечетной), если для любого x∈D(f) и выполняется равенство f(x)=f(-x).
График четной функции симметричен относительно оси .
График нечетной функции симметричен относительно начала координат
Наш пример : y=x²-cos2x
Функция определенна при x∈(-∞;∞) , то есть f(-x)=(-x)²-cos2(-x)=-x²-cos2x=-(x²-cos2x)-функция является четной, т.к cosx-четная функция
2.Нам нужно сравнить два значения sin(-20°) V sin(-85)°, где V- знак сравнения ( птичкой называют)
sin(-20°) > sin(-85°). Есть еще более простой смотри поскольку числа не четные, пусть в место sin(-20°) будет sin(-30°)=-0,5 и sin(-85°) бусть будет sin(-90)=-1 и так -0,5>-1
ответ: 1) y=x²-cos2x- функция четная ; 2)sin(-20°) > sin(-85°)
Надеюсь, твой педагог не такая уш придирчивая. Удачи тебе!
Можно решить двумя Через тригонометрический круг; 2)Аналитически По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.
№1. Тригонометрический круг Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:
150<sinx<30
P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)
№2. Аналитический Рассмотрим уравнение:
Решая уравнение, получим:
Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2. Опять же, отсюда вытекает двойное неравенство:
1. Итак, нам нужно понять какая эта функция! Для этого Вспомним, что функция f(x )-называется четной( нечетной), если для любого x∈D(f) и выполняется равенство f(x)=f(-x).
График четной функции симметричен относительно оси .
График нечетной функции симметричен относительно начала координат
Наш пример : y=x²-cos2x
Функция определенна при x∈(-∞;∞) , то есть f(-x)=(-x)²-cos2(-x)=-x²-cos2x=-(x²-cos2x)-функция является четной, т.к cosx-четная функция
2.Нам нужно сравнить два значения sin(-20°) V sin(-85)°, где V- знак сравнения ( птичкой называют)
Итак, sin(-20°)=sin(-10°)+sin30°≈0,1736+0,5≈-0,34
sin(-85°)=sin(-5°)-sin(90°)≈0,0872+1≈0,9999=грубо 1
sin(-20°) > sin(-85°). Есть еще более простой смотри поскольку числа не четные, пусть в место sin(-20°) будет sin(-30°)=-0,5 и sin(-85°) бусть будет sin(-90)=-1 и так -0,5>-1
ответ: 1) y=x²-cos2x- функция четная ; 2)sin(-20°) > sin(-85°)
Надеюсь, твой педагог не такая уш придирчивая. Удачи тебе!
2)Аналитически
По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.
№1. Тригонометрический круг
Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:
150<sinx<30
P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)
№2. Аналитический
Рассмотрим уравнение:
Решая уравнение, получим:
Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2.
Опять же, отсюда вытекает двойное неравенство:
150<sinx<30