Дана функция y=f(x), где f(x)= -x+3,4, если x<-2 f(x)= -2x+5, если -2≤ x≤ 3.5 f(x)= x²,если x>3.5 вычислите значения функций при заданных значениях аргумента . Расположите полученные числа в порядке убывания f(-3)= 3+3,4=6,4 f(x)= -x+3,4, если x<-2 f(-2) =4+5=9 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3) =-6+5=-1 f(x)= -2x+5, если -2≤ x≤ 3.5 f(4)=16 f(x)= x²,если x>3.5 f(0)= 0+5=5 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3.5)=-7+5=-2 f(x)= -2x+5, если -2≤ x≤ 3.5
Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0
где f(x)= -x+3,4, если x<-2 f(x)= -2x+5, если -2≤ x≤ 3.5
f(x)= x²,если x>3.5 вычислите значения функций при заданных значениях аргумента . Расположите полученные числа в порядке убывания
f(-3)= 3+3,4=6,4 f(x)= -x+3,4, если x<-2
f(-2) =4+5=9 f(x)= -2x+5, если -2≤ x≤ 3.5
f(3) =-6+5=-1 f(x)= -2x+5, если -2≤ x≤ 3.5
f(4)=16 f(x)= x²,если x>3.5
f(0)= 0+5=5 f(x)= -2x+5, если -2≤ x≤ 3.5
f(3.5)=-7+5=-2 f(x)= -2x+5, если -2≤ x≤ 3.5
точно не знаю, но 4 вроде так
Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0