- неизвестные в одну сторону( влево), при этом меняем знак на противоположный ( если переносим);
- известные в другую сторону( вправо), при этом меняем знак на противоположный ( если переносим).
-7,2у=2,8-10,4
3. Решаем как простое уравнение, находим у. Мы видим перед собой произведение чисел, 2-ой множитель нам неизвестен (у). Чтобы найти 2-ой множитель ( у), нужно произведение( -7,6 ) разделить на 1-ый множитель (-7,2).
ответ: у=1,055
Объяснение:
1. Раскрываем скобки:
10,4=7,2у+2,8
2. Переносим:
- неизвестные в одну сторону( влево), при этом меняем знак на противоположный ( если переносим);
- известные в другую сторону( вправо), при этом меняем знак на противоположный ( если переносим).
-7,2у=2,8-10,4
3. Решаем как простое уравнение, находим у. Мы видим перед собой произведение чисел, 2-ой множитель нам неизвестен (у). Чтобы найти 2-ой множитель ( у), нужно произведение( -7,6 ) разделить на 1-ый множитель (-7,2).
-7,2у=-7,6
у=-7,6÷-7,2
у=1,055
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2