В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Yarik346
Yarik346
18.10.2021 12:08 •  Алгебра

Найдите сумму всех целых решений неравенства (решение)​


Найдите сумму всех целых решений неравенства (решение)​

Показать ответ
Ответ:
AnnLage
AnnLage
15.07.2021 03:19

5

Объяснение:

\displaystyle\\\frac{|x+2|}{x^2-x} \frac{\sqrt{x^2+4x+4} }{x^2-x-20} \\\\\\\frac{|x+2|}{x^2-x} \frac{\sqrt{(x+2)^2} }{x^2-x-20} \\\\\\\frac{|x+2|}{x^2-x} \frac{|x+2|}{x^2-x-20}\\\\\\ \frac{|x+2|}{x^2-x} -\frac{|x+2|}{x^2-x-20}0\\\\\\|x+2|*\Big(\frac{1}{x^2-x} -\frac{1}{x^2-x-20}\Big) 0\\\\\\|x+2|*\frac{x^2-x-20-x^2+x}{x(x-1)(x+4)(x-5)}0 \\\\\\|x+2|*\frac{20}{x(x-1)(x+4)(x-5)}

|x + 2| ≥0 ,  но у нас строгое неравенство,

значит из решений надо исключить х= - 2

рассмотрим второй множитель

решим методом интервалов

нули : -4; 0; 1; 5

+++(-4)---(0)+++(1)---(5)+++>x

x ∈ (-4; 0) ∪ (1; 5)

исключим х = - 2

решением неравенства является

x ∈ (-4; -2) ∪(-2; 0) ∪ (1; 5)

найдем  сумму всех целых решений неравенства

-3 + (-1) + 0 + 2 + 3 + 4 = 5

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота