1) (х+3)⁴ - 13(х+3)² + 36 = 0
проведемо заміну (х+3)² = t
t² - 13t + 36 = 0
знайдемо дискримінат D=169-144=25
√D = √25 = 5
t1=(13+5)/2=18/2=9
t2=(13-5)/2=8/2=4
проведемо зворотню заміну
(х+3)²=9
х²+6х+9=9
х²+6х=0
х(х+6)=0
х=0
х=0х=-6
(х+3)²=4
х²+6х+9=4
х²+6х+5=0
D=36-20=16
√D = √16 = 4
x1=(-6+4)/2=-1
x2=(-6-4)/2=-5
x1=-6, x2=-5, x3=-1, x4=0
2) (x²-9)² - 8(x²-9) + 7 = 0
проведемо заміну (х²-9) = t
t²-8t+7=0
D=64-28=36
√D = √36 = 6
t1=(8+6)/2=7
t2=(8-6)/2=1
х²-9=7
х²=16
х=±4
х²-9=1
х²=10
х=±√10
х1=-4, х2=-√10, х3=√10, х4=4
3) (2х²+3х)² -7(2х²+3х) + 10=0
проведемо заміну (2х²+3х) = t
t²-7t+10=0
D=49-40=9
√9 = 3
t1=(7+3)/2=5
t2=(7-3)/2=2
2х²+3х=5
2х²+3х-5=0
D=9+40=49
√49 = 7
x1=(-3+7)/4=1
x2=(-3-7)/4=-10/4=-5/2=-2,5
2x²+3x=2
2x²+3x-2=0
D=9+16=25
√25 = 5
x1=(-3+5)/4=2/4=1/2=0,5
x2=(-3-5)/4=-8/4=-2
x1=-2,5, x2=-2, x3=0,5, x4=1
1) x1=-6, x2=-5, x3=-1, x4=0
2) х1=-4, х2=-√10, х3=√10, х4=4
3) x1=-2,5, x2=-2, x3=0,5, x4=1
2) 5(2а+ах)-5(2а-ах) =5(2a + ax - 2a + ax)= 5*2ax=10ax
3) 4m(m-2)-(4m^2-8) = 4m(m-2)-4(m^2 - 2) = 4(m^2-2m -m^2+2) = 4(2-m^2)
4) 2(х^2-7)+(7-2х^2) =2х^2-14 + 7 - 2х^2 = -7
5) 3х(х-у)+3у(х+у) = 3x^2 - 3xy + 3xy + 3y^2 = 3(x^2+y^2)
6) n^2(n-2)-n(n^2-1) = n^3 - 2n^2 - n^3 + n= n - 2n^2
7) 3а^2(2а^2-а^2+1) = 3a^2(a^2 + 1) = 3a^4 + 3a^2
8) 5в^2(2а^3-в+3) = 10a^3b^2 - 5b^3 + 15b^2
9) а^2-а(а-в) = a^2 -a^2 + ab = ab
10) х(х+у)-ху = x^2 + xy - xy = x^2
11) 3а(а-2)-2а(а-3) =3a^2 - 6a - 2a^2 + 6a = a^2
12) 2в(в-с) +с(2в-с) = 2b^2 - 2bc + 2bc - c^2 = 2b^2 - c^2
1) (х+3)⁴ - 13(х+3)² + 36 = 0
проведемо заміну (х+3)² = t
t² - 13t + 36 = 0
знайдемо дискримінат D=169-144=25
√D = √25 = 5
t1=(13+5)/2=18/2=9
t2=(13-5)/2=8/2=4
проведемо зворотню заміну
(х+3)²=9
х²+6х+9=9
х²+6х=0
х(х+6)=0
х=0
х=0х=-6
(х+3)²=4
х²+6х+9=4
х²+6х+5=0
D=36-20=16
√D = √16 = 4
x1=(-6+4)/2=-1
x2=(-6-4)/2=-5
x1=-6, x2=-5, x3=-1, x4=0
2) (x²-9)² - 8(x²-9) + 7 = 0
проведемо заміну (х²-9) = t
t²-8t+7=0
D=64-28=36
√D = √36 = 6
t1=(8+6)/2=7
t2=(8-6)/2=1
проведемо зворотню заміну
х²-9=7
х²=16
х=±4
х²-9=1
х²=10
х=±√10
х1=-4, х2=-√10, х3=√10, х4=4
3) (2х²+3х)² -7(2х²+3х) + 10=0
проведемо заміну (2х²+3х) = t
t²-7t+10=0
D=49-40=9
√9 = 3
t1=(7+3)/2=5
t2=(7-3)/2=2
проведемо зворотню заміну
2х²+3х=5
2х²+3х-5=0
D=9+40=49
√49 = 7
x1=(-3+7)/4=1
x2=(-3-7)/4=-10/4=-5/2=-2,5
2x²+3x=2
2x²+3x-2=0
D=9+16=25
√25 = 5
x1=(-3+5)/4=2/4=1/2=0,5
x2=(-3-5)/4=-8/4=-2
x1=-2,5, x2=-2, x3=0,5, x4=1
ВІДПОВІДЬ:1) x1=-6, x2=-5, x3=-1, x4=0
2) х1=-4, х2=-√10, х3=√10, х4=4
3) x1=-2,5, x2=-2, x3=0,5, x4=1