(x + 3)(4 - x) - 12 = 0
1) x = - 1
(- 1 + 3)[4 - (- 1)] - 12 = 0
2 * 5 - 12 = 0
10 - 12 ≠ 0
x = - 1 - не является корнем этого уравнения
2) x = 0
(0 + 3)(4 - 0) - 12 = 0
3 * 4 - 12 = 0
12 - 12 = 0 - верно
x = 0 - является корнем этого уравнения
3) x = 1
(1 + 3)(4 - 1) - 12 = 0
4 * 3 - 12 = 0
x = 1 - является корнем этого уравнения
4) x = 2
(2 + 3)(4 - 2) - 12 = 0
5 * 2 - 12 = 0
x = 2 - не является корнем этого уравнения
5) x = 3
(3 + 3)(4 - 3) - 12 = 0
6 * 1 - 12 = 0
6 - 12 ≠ 0
x = 3 - не является корнем этого уравнения
ответ : 0 ; 1
По формуле:
Зная это получаем:
Известно что:
отсюда получаем:
Получаем 2 уравнения:
это табличное значение синуса и получается 2 решения:
аналогично получаем 2 решения:
Теперь обратим внимание, что эти 4 решения можно записать в 2 решения в виде:
Теперь надо найти при каких значениях k и n решения лежат на отрезке
Для этого решаем 2 неравенства
1)
Так как к у нас принадлежит целым числам, то получается что к=0,1,2
2) Теперь ищем n, аналогично:
Поскольку n принадлежит целым числам, то получается что n=0,1
(x + 3)(4 - x) - 12 = 0
1) x = - 1
(- 1 + 3)[4 - (- 1)] - 12 = 0
2 * 5 - 12 = 0
10 - 12 ≠ 0
x = - 1 - не является корнем этого уравнения
2) x = 0
(0 + 3)(4 - 0) - 12 = 0
3 * 4 - 12 = 0
12 - 12 = 0 - верно
x = 0 - является корнем этого уравнения
3) x = 1
(1 + 3)(4 - 1) - 12 = 0
4 * 3 - 12 = 0
12 - 12 = 0 - верно
x = 1 - является корнем этого уравнения
4) x = 2
(2 + 3)(4 - 2) - 12 = 0
5 * 2 - 12 = 0
10 - 12 ≠ 0
x = 2 - не является корнем этого уравнения
5) x = 3
(3 + 3)(4 - 3) - 12 = 0
6 * 1 - 12 = 0
6 - 12 ≠ 0
x = 3 - не является корнем этого уравнения
ответ : 0 ; 1
По формуле:
Зная это получаем:
Известно что:
отсюда получаем:
Получаем 2 уравнения:
это табличное значение синуса и получается 2 решения:
аналогично получаем 2 решения:
Теперь обратим внимание, что эти 4 решения можно записать в 2 решения в виде:
Теперь надо найти при каких значениях k и n решения лежат на отрезке
Для этого решаем 2 неравенства
1)
Так как к у нас принадлежит целым числам, то получается что к=0,1,2
2) Теперь ищем n, аналогично:
Поскольку n принадлежит целым числам, то получается что n=0,1