В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ayna4
ayna4
02.04.2022 21:06 •  Алгебра

Найдите такие решения уравнения y^2-x^2=123, в которых значения x и y - натуральные числа.

Показать ответ
Ответ:
Lina555510
Lina555510
30.09.2020 12:51

x и y - натуральные числа, значит числа y-x и y+x - целые.

 

y^2-x^2=123

(y-x)(y+x)=123

 

123 можно записать в произведение двух целіх чисел следующим образом

123=1*123=(-1)*(-123)=3*41=(-3)*(-41).

Значит получаем восемь систем уравнений

первая

y-x=1

y+x=123

y=(1+123)/2=62

x=(123-1)/2=61

(61;62) - подходит

вторая

y-x=123

y+x=1

x=(1-123)/2=-61 - не натуральное, не подходит

третья

y-x=-1

y+x=-123

не подходит так как сумма двух натуральных чисел число натуральное, а значит неотрицательное

четвертая

y-x=-123

y+x=-1

не подходит так как сумма двух натуральных чисел число натуральное, а значит неотрицательное

пятая

y-x=3

y+x=41

y=(41+3)/2=22

x=(41-3)/2=19

(19;22) - подходит

шестая

y-x=41

y+x=3

x=(3-41)/2=-19 - не подходит

седьмая

y-x=-3

y+x=-41

и восьмая

y-x=-41

y+x=-3

не подходят так как сумма двух натуральных чисел число натуральное, а значит неотрицательное

 

ответ: (19;22),(61;62)

 

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота