Найдите такое натуральное значение параметра p, при котором во множестве решений неравенства (x-8)(p+x)< =0 содержатся: а) десять целых чисел; б) два отрицательных целых числа; в) четыре целых не положительных числа; г) только положительные целые числа.
(x-8)(p+x)≤0, p∈N,
x^2+(p-8)x-8p≤0,
a=1>0,
x^2+(p-8)x-8p=0,
D=(p-8)^2-4*(-8p)=(p+8)^2>0,
x_1=(-(p-8)-(p+8))/2=-p,
x_2=(-(p-8)+(p+8))/2=8,
-p≤x≤8, x∈[-p;8];
a) x_2=x_1+9,
-p+9=8,
p=1,
-1≤x≤8, x∈[-1;8]; /-1, 0, 1, 2, 3, 4, 5, 6, 7, 8
б) -3<x_1≤-2,
-3<-p≤-2,
2≤p<3,
p=2,
-2≤x≤8, x∈[-2;8]; /-2, -1
в) -4<x_1≤-3,
-4<-p≤-3,
3≤p<4,
p=3,
-3≤x≤8, x∈[-3;8]; /-3, -2, -1, 0
г) x_1>0,
-p>0,
p<0, p∉N