Выясним вид и расположение графика функции y=-x²+4 относительно начала координат. График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны. Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной. -х²+4=0; х²=4 → х=√4 Корнями будут х₁=-2, х₂=2 Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2. В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0. Значение максимума у(0) равно -0²+4 = 4. Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2. В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
Абсолютная погрешность равна модулю разницы между точным и округленным числом. Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах.
График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны.
Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y
Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной.
-х²+4=0; х²=4 → х=√4
Корнями будут х₁=-2, х₂=2
Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2.
В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0.
Значение максимума у(0) равно -0²+4 = 4.
Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2.
В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
График функции дан во вложении.
Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах.
1.
1) 5,4 = 5. Абс = 5,4-5 = 0,4. Отн = 0,4:5,4*100% = 7,4%
2) 7,9 = 8. Абс = 8-7,9 = 0,1. Отн = 0,1:7,9*100% = 1,27%
3) 1,89 = 2. Абс = 2-1,89 = 0,11. Отн = 0,11:1,89*100% = 5,82%
4) 8,5 = 9. Абс = 9-8,5 = 0,5. Отн = 0,5:8,5*100% = 5,88%
5) 3,71 = 4. Абс = 4-3,71 = 0,29. Отн = 0,29:3,71*100% = 7,82%
6) 11,27 = 11. Абс = 11,27-11 = 0,27. Отн = 0,27:11,27*100% = 2,4%
2.
1) 8,79 = 0. Абс = 9-8,79 = 0,21
2) 0,777 = 0,8. Абс = 0,8-0,777 = 0,023
3) 132 = 130. Абс = 132-130 = 2
4) 1,23 = 1,23. Абс = 1,23-1,23 = 0.