В каждом часе 6 промежутков по 10 мин, вероятность того, что А прийдёт в определенный промежуток времени 1/6, так и для другого, но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6; так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит) прпросуммируем результат
то-есть 1/6 сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6
но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6;
так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит)
прпросуммируем результат
то-есть 1/6
сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры
к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6
Объяснение:
ДАНО:Y(x) = x^3 -12*x² +36*x +()
ИССЛЕДОВАНИЕ.
1. Область определения D(y) = R, Х∈(-∞;+∞) - непрерывная , гладкая
2. Пересечение с осью OХ.
Разложим многочлен на множители. Y=(x-0)*(x-6)*(x-6)
Нули функции: Х₁ =0, Х₂ =6, Х₃ =6
3. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;0]. Положительная -Y(x)>0 X∈[0;+∞)
4. Пересечение с осью OY. Y(0) = 0.
5. Исследование на чётность.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
6. Первая производная. Y'(x) = 3*x² -24*x + 36 = 0
Корни Y'(x)=0. Х4=2 Х5=6
Положительная парабола - отрицательная между корнями
7. Локальные экстремумы.
Максимум Ymax(X4=2) =32. Минимум Ymin(X5=6) =0
8. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;2;]U[6;+∞) , убывает - Х∈[2;6]
9. Вторая производная - Y"(x) = 6* x -24 = 0
Корень производной - точка перегиба Х₆=4
10. Выпуклая “горка» Х∈(-∞; Х₆=4]
Вогнутая – «ложка» Х∈[Х₆=4; +∞).
11. График в приложении.
Дополнительно: шаблон для описания графика.