Левая часть неравенства должна существовать, поэтому a + x >= 0, a - x >= 0
Переписываем систему в виде -a <= x <= a, |x| <= a откуда видно, что a >= 0. Можно сразу записать, что если a < 0, то решений нет.
Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат. a + x + 2sqrt(a^2 - x^2) + a - x > a^2 sqrt(a^2 - x^2) > a(a - 2)/2
Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует. a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.
Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат. a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4 x^2 < a^3 (4 - a)/4.
У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.
Заметим, что при таких a правая часть меньше a^2, ведь a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.
Собираем всё в одно и получаем ответ. ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
a + x >= 0,
a - x >= 0
Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.
Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2
Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.
Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.
У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.
Заметим, что при таких a правая часть меньше a^2, ведь
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.
Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4(x^2 + 7x + 6)*(x^2 + 5x + 6) = -3x^2
Замена x^2 + 6x + 6 = t
4(t + x)(t - x) = -3x^2
4(t^2 - x^2) = -3x^2
4t^2 - 4x^2 + 3x^2 = 0
4t^2 - x^2 = 0
(2t - x)(2t + x) = 0
Обратная замена
(2x^2 + 12x + 12 - x)(2x^2 + 12x + 12 + x) = 0
(2x^2 + 11x + 12)(2x^2 + 13x + 12) = 0
Разложили на 2 квадратных. Решаем их отдельно.
1) 2x^2 + 11x + 12 = 0
D = 11^2 - 4*2*12 = 121 - 96 = 25 = 5^2
x1 = (-11 - 5)/4 = -16/4 = -4
x2 = (-11 + 5)/4 = -6/4 = -1,5
2) 2x^2 + 13x + 12 = 0
D = 13^2 - 4*2*12 = 169 - 96 = 73
x3 = (-13 - √73)/4
x4 = (-13 + √73)/4