В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
davidgts
davidgts
30.04.2023 18:55 •  Алгебра

Найдите точку макимума функции: x^3 + 48/x

Показать ответ
Ответ:
mikhaillukashc
mikhaillukashc
24.07.2020 06:45
Y = x³ + 48/x
Решение
Находим первую производную функции:
y' = 3x² - 48/x²
или
y' = (3x⁴ - 48)/x²
Приравниваем ее к нулю:
3x² - 48/x² = 0
x1 = -2
x₂ = 2
Вычисляем значения функции 
f(-2) = - 32
f(2) = 32
ответ: fmin = -32, fmax = 32
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 6x + 96/x³
или
y'' = (6x⁴ + 96)/x³
Вычисляем:
y''(-2) = -24 < 0 - значит точка x = - 2 точка максимума функции.
y''(2) = 24 > 0 - значит точка x = 2 точка минимума функции.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота