План действий: 1) ищем производную 2) приравниваем к 0 и решаем уравнение ( ищем критические точки) 3) проверяем знаки производной около полученных корней ( если идёт смена знака с + на - это точка max; если идёт смена знак с - на + , то это точка min) Начали? a) производная = =(2х - 14)е^3-x - (x² - 14x + 14)·e^3 - x = e^3 - x·(2x -14 -x² +14x -14)= =e^3 - x ·(-x²+16 x - 28) б)e^3 - x ·(-x²+16 x - 28)= 0, т.к. е^3 - x ≠0, запишем: - х² + 16 х -28 = 0 По т. Виета х1 = 2 и х2 = 14 в) -∞ - 2 + 14 - +∞ min max ответ: 14
2) приравниваем к 0 и решаем уравнение ( ищем критические точки)
3) проверяем знаки производной около полученных корней
( если идёт смена знака с + на - это точка max;
если идёт смена знак с - на + , то это точка min)
Начали?
a) производная =
=(2х - 14)е^3-x - (x² - 14x + 14)·e^3 - x = e^3 - x·(2x -14 -x² +14x -14)=
=e^3 - x ·(-x²+16 x - 28)
б)e^3 - x ·(-x²+16 x - 28)= 0, т.к. е^3 - x ≠0, запишем:
- х² + 16 х -28 = 0
По т. Виета х1 = 2 и х2 = 14
в) -∞ - 2 + 14 - +∞
min max
ответ: 14