В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bugemila36id
bugemila36id
02.06.2021 08:20 •  Алгебра

Найдите точку минимума функции y=x√x-24x+29

Показать ответ
Ответ:
taras9877
taras9877
09.07.2020 15:18
y= x\sqrt{x} -24x+29= x^{\frac{3}{2}} - 24x + 29

Берем производную: \frac{3}{2} \sqrt{x} - 24  
\frac{3}{2} \sqrt{x} - 24=0 - Точки экстрема 

\frac{3}{2} \sqrt{x} = 24   
\sqrt{x} = (24/3)*2 = 16 

x_{ex}=16^{2} = 256   
y_{ex} = 256* \sqrt{256} - 256*24 + 29 = 256*(16-24)+29=-2048+29=-2019

Узнать, минимум или максимум эта точка экстрема, можно простой подстановкой -
взять любую удобную точку х до точки экстрема и также после точки экстрема:

y_{ex-n} = 225* \sqrt{225} - 225*24 + 29 = 225*(15-24)+29=-2025+29=-2054

y_{ex+n} = 289* \sqrt{289} - 289*24 + 29 = 289*(17-24)+29=-2023+29=-2052

Так как эти обе точки находятся ниже найденной точки экстрема,то найденный экстрем является максимумом.
А минимума нет просто (или минусовая бесконечность х= -\infty)
Надо еще раз проверить, может ошибка в знаках где-то ...
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота