3) уравнение и длину высоты, опущенной из вершины С;
4) точку пересечения высот;
5) уравнение медианы, проведенной через вершину С;
6) систему линейных неравенств, определяющих треугольник АВС.
А ( 1; -5 )
В ( 4; -4 )
С ( -2; -1 )
Сделаем чертёж:
1)длина стороны АВ: - длина стороны АВ.
2) внутренний угол А с точностью градуса:
Для поиска угла воспользуемся формулой . В данном случае k1=kАB, а k2=kАC - угловые коэффициенты прямых АВ и АС.
Найдем угловые коэффициенты по формуле: .
; ?
? А=arctg(-3)=180°-72°»108° - внутренний угол А.
3) уравнение и длину высоты, опущенной из вершины С:
Составим уравнение высоты CD.
Высота CD перпендикулярна стороне AB. По условию перпендикулярности двух прямых
Составим уравнение высоты CD по известной точке и угловому коэффициенту:
y-yс=k(x-xс)
y+1=-3.(x+2)
y+1=-3x-6
3x+y+7=0 - уравнение высоты (CD)
Найдем длину высоты CD по формуле для расстояния от точки до прямой:
Составим уравнение прямой AB по угловому коэффициенту и точке A, принадлежащей прямой:
y-yА=kАВ(x-xА)
y+5=(x-1) - Домножим на 3 обе части уравнения:
3y+15=x-1
x-3y-16=0 - уравнение (AB)
Тогда (ед. дл.) – длина высоты (СD).
4) точку пересечения высот:
Точку пересечения двух прямых можно найти, решив систему уравнений, задающих эти прямые, поэтому нужно найти уравнение еще одной высоты, например, BK.
Составим уравнение высоты (BK) по известной точке и угловому коэффициенту:
y-yВ=k(x-xВ)
y-4=3/4.(x-4) - Домножим на 4 обе части уравнения:
4y-16=3x-12
3x-4y+28=0 - уравнение (BK), тогда
(.) О:
Таким образом, высоты пересекаются в точке О: (-56/15;63/15)
5) уравнение медианы, проведенной через вершину С:
Найдем координаты точки E как координаты середины отрезка АВ:
(.)Е: (5/2; -9/2)
Запишем уравнение медианы (CE) по 2 точкам:
-7(x+2)=9(y+1)
-7x-14-9y-9=0
-7x-9y-23=0
7x+9y+23=0 уравнение медианы (CE).
6. Систему линейных неравенств, определяющих треугольник АВС:
Составим уравнение всех сторон треугольника:
Уравнение стороны АВ уже было составлено: x-3y-16=0
Составим уравнение прямой AС по угловому коэффициенту и точке A, принадлежащей прямой:
y-yА=kАC(x-xА)
y+5=(x-1) - Домножим на 3 обе части уравнения:
3y+15=-4x+4
4x+3y+11=0 - уравнение (АС)
Найдем уравнение стороны (ВС) по 2 точкам:
3.(х-4)=-6.(y+4)
x+2y-4+8=0
x+2y+4=0 - уравнение (BС)
Для определения знаков неравенств в левую часть каждого уравнения подставим координаты противоположной вершины, которая гарантированно принадлежит соответствующей полуплоскости:
Подставим (.)С (-2;-1) в уравнение (АВ) x-3y-16=-2-3.(-1)-16 =-15<0
Подставим (.)В (4;-4) в уравнение (АС) 4x+3y+11=4.4+3.(-4)+11=15>0
Подставим (.)А (1;-5) в уравнение (ВС) x+2y+4=1+2. (-5)+4=-5<0
Теперь можно записать систему неравенств:
1) длина стороны АВ: =
2) внутренний угол А с точностью градуса: А »108°;
3) уравнение и длина высоты, опущенной из вершины С: 3x+y+7=0 - (CD) иед.дл.
4) точка пересечения высот О: (-56/15;63/15);
5) уравнение медианы, проведенной через вершину С: 7x+9y+23=0 - (CE);
6) система линейных неравенств, определяющих треугольник АВС:
Даны вершины А(х1; у1), В(х2; у2), С(х3, у3) треугольника.
Сделать чертеж и найти:
1) длину стороны АВ;
2) внутренний угол А с точностью градуса;
3) уравнение и длину высоты, опущенной из вершины С;
4) точку пересечения высот;
5) уравнение медианы, проведенной через вершину С;
6) систему линейных неравенств, определяющих треугольник АВС.
А ( 1; -5 )
В ( 4; -4 )
С ( -2; -1 )
Сделаем чертёж:
1)длина стороны АВ: - длина стороны АВ.
2) внутренний угол А с точностью градуса:
Для поиска угла воспользуемся формулой . В данном случае k1=kАB, а k2=kАC - угловые коэффициенты прямых АВ и АС.
Найдем угловые коэффициенты по формуле: .
; ?
? А=arctg(-3)=180°-72°»108° - внутренний угол А.
3) уравнение и длину высоты, опущенной из вершины С:
Составим уравнение высоты CD.
Высота CD перпендикулярна стороне AB. По условию перпендикулярности двух прямых
Составим уравнение высоты CD по известной точке и угловому коэффициенту:
y-yс=k(x-xс)
y+1=-3.(x+2)
y+1=-3x-6
3x+y+7=0 - уравнение высоты (CD)
Найдем длину высоты CD по формуле для расстояния от точки до прямой:
Составим уравнение прямой AB по угловому коэффициенту и точке A, принадлежащей прямой:
y-yА=kАВ(x-xА)
y+5=(x-1) - Домножим на 3 обе части уравнения:
3y+15=x-1
x-3y-16=0 - уравнение (AB)
Тогда (ед. дл.) – длина высоты (СD).
4) точку пересечения высот:
Точку пересечения двух прямых можно найти, решив систему уравнений, задающих эти прямые, поэтому нужно найти уравнение еще одной высоты, например, BK.
Составим уравнение высоты (BK) по известной точке и угловому коэффициенту:
y-yВ=k(x-xВ)
y-4=3/4.(x-4) - Домножим на 4 обе части уравнения:
4y-16=3x-12
3x-4y+28=0 - уравнение (BK), тогда
(.) О:
Таким образом, высоты пересекаются в точке О: (-56/15;63/15)
5) уравнение медианы, проведенной через вершину С:
Найдем координаты точки E как координаты середины отрезка АВ:
(.)Е: (5/2; -9/2)
Запишем уравнение медианы (CE) по 2 точкам:
-7(x+2)=9(y+1)
-7x-14-9y-9=0
-7x-9y-23=0
7x+9y+23=0 уравнение медианы (CE).
6. Систему линейных неравенств, определяющих треугольник АВС:
Составим уравнение всех сторон треугольника:
Уравнение стороны АВ уже было составлено: x-3y-16=0
Составим уравнение прямой AС по угловому коэффициенту и точке A, принадлежащей прямой:
y-yА=kАC(x-xА)
y+5=(x-1) - Домножим на 3 обе части уравнения:
3y+15=-4x+4
4x+3y+11=0 - уравнение (АС)
Найдем уравнение стороны (ВС) по 2 точкам:
3.(х-4)=-6.(y+4)
x+2y-4+8=0
x+2y+4=0 - уравнение (BС)
Для определения знаков неравенств в левую часть каждого уравнения подставим координаты противоположной вершины, которая гарантированно принадлежит соответствующей полуплоскости:
Подставим (.)С (-2;-1) в уравнение (АВ) x-3y-16=-2-3.(-1)-16 =-15<0
Подставим (.)В (4;-4) в уравнение (АС) 4x+3y+11=4.4+3.(-4)+11=15>0
Подставим (.)А (1;-5) в уравнение (ВС) x+2y+4=1+2. (-5)+4=-5<0
Теперь можно записать систему неравенств:
1) длина стороны АВ: =
2) внутренний угол А с точностью градуса: А »108°;
3) уравнение и длина высоты, опущенной из вершины С: 3x+y+7=0 - (CD) иед.дл.
4) точка пересечения высот О: (-56/15;63/15);
5) уравнение медианы, проведенной через вершину С: 7x+9y+23=0 - (CE);
6) система линейных неравенств, определяющих треугольник АВС:
Не может
Объяснение:
Всего единичных кубиков: p^3.
Из них кубиков, у которых не окрашено ни одной грани: (p-2)^3.
Это куб с ребром (p-2), который находится целиком внутри большого.
Посчитаем окрашенные кубики:
1) На вершинах 8 кубиков, у которых окрашено 3 грани.
2) На 12 ребрах 12(p-2) кубиков, у которых окрашено 2 грани.
3) На 6 гранях куба 6(p-2)^2 кубиков, у которых окрашена 1 грань.
И это количество должно быть равно неокрашенным кубикам.
(p-2)^3 = 6(p-2)^2 + 12(p-2) + 8
(p-2)^3 - 6(p-2)^2 - 12(p-2) - 8 = 0
Замена p-2 = t
t^3 - 6t^2 - 12t - 8 = 0
Так как t должно быть натуральным, то оно является делителем 8.
Пробуем 2, 4 и 8:
2^3 - 6*2^2 - 12*2 - 8 = 8 - 6*4 - 24 - 8 = -48
4^3 - 6*4^2 - 12*4 - 8 = 64 - 6*16 - 48 - 8 = -88
8^3 - 6*8^2 - 12*8 - 8 = 512 - 6*64 - 96 - 8 = 512 - 384 - 104 = 24
Ни одно из целых значений не подходит, значит, так сделать нельзя.
Попробуем на всякий случай 7:
7^3 - 6*7^2 - 12*7 - 8 = 343 - 6*49 - 84 - 8 = 343 - 294 - 92 = -43
t ∈ (7, 8), и оно иррациональное.