В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
высшийразум68
высшийразум68
05.12.2021 01:03 •  Алгебра

Найдите удвоенное произведение всех корней уравнения ( \sqrt{2x - 2} - \sqrt{x + 3} )( \sqrt{x + 3} + 3) = x - 5

Показать ответ
Ответ:
Hellybery
Hellybery
25.05.2020 03:08

Домножим обе части уравнения на \sqrt{2x-2}+\sqrt{x+3}\ne 0:

(\sqrt{2x-2}+\sqrt{x+3})( \sqrt{2x - 2}-\sqrt{x + 3} )( \sqrt{x + 3}+3) =\\=(x - 5)(\sqrt{2x-2}+\sqrt{x+3})

Первые две скобки можно раскрыть по формуле разности квадратов:

((2x-2)-(x + 3) )( \sqrt{x + 3}+3) =(x - 5)(\sqrt{2x-2}+\sqrt{x+3})\\(x-5)(\sqrt{x+3}+3)=(x-5)(\sqrt{2x-2}+\sqrt{x+3})

x = 5 – корень последнего полученного уравнения. Поищем другие корни, при x ≠ 5 на x - 5 можно сократить:

\sqrt{x+3}+3=\sqrt{2x-2}+\sqrt{x+3}\\\sqrt{2x-2}=3\\2x-2=9\\2x=11\\x=5.5

Итак, возможные корни уравнения – x = 5 и x = 5.5. Проверкой убеждаемся, что при подстановке каждого из этих значений в исходное уравнение получается верное равенство, так что в ответ пойдет 2\cdot(5\cdot5.5)=55

ответ. 55

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота