Найдите угловой коэффициент касательной к графику функции в точке с абсциссой .
2.Найдите угловой коэффициент касательной к графику функции в точке с абсциссой .
3.Напишите уравнение касательной к графику функции в точке (1; 1).
4. Найдите тангенс угла наклона касательной, проведённой к графику функции у=2 sin х в точке с абсциссой x0=π/4 .
ответ:
d=b^2-4ac=(-1)^2-4*1*(-72)=1+288=\sqrt{289}
289
=17
х1=\frac{-b- \sqrt{d} }{2a} = \frac{1-17}{2} = \frac{-16}{2} =-8
2a
−b−
d
=
2
1−17
=
2
−16
=−8
х2=\frac{-b+ \sqrt{d} }{2a} = \frac{1+17}{2} = \frac{18}{2} = 9
2a
−b+
d
=
2
1+17
=
2
18
=9
ответ: -8 и 9
d=b^2-4ac=7^2-4*(-4)*(-3)=49-48=\sqrt{1} =1
1
=1
х1=\frac{-b- \sqrt{d} }{2a} = \frac{-7-1}{2*(-4)} = \frac{-8}{-8} =1
2a
−b−
d
=
2∗(−4)
−7−1
=
−8
−8
=1
х2=\frac{-b+ \sqrt{d} }{2a} = \frac{-7+1}{(-8)} = \frac{-6}{-8} =0,75
2a
−b+
d
=
(−8)
−7+1
=
−8
−6
=0,75
В решении.
Объяснение:
Решить систему неравенств:
1)
x <= 5
x >= -1
x∈(-∞; 5] - интервал решений первого неравенства (при х от - бесконечности до х=5).
х∈[-1; +∞) - интервал решений второго неравенства (при х от -1 до + бесконечности).
Неравенства нестрогие, х=5 и х= -1 входят в интервал решений, поэтому скобка квадратная.
А знаки бесконечности всегда в круглой скобке.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем значения -1, 0, 5, + - бесконечность.
x∈(-∞; 5] - штриховка вправо от - бесконечности до 5, кружок на 5 закрашенный, это значит, что 5 входит в интервал решений.
х∈[-1; +∞) - штриховка вправо от -1 до + бесконечности, кружок на -1 закрашенный, это значит, что -1 входит в интервал решений.
x∈[-1; 5] - пересечение решений (двойная штриховка) от х= -1 до х=5, это решение системы неравенств. Скобки квадратные.
2.
2х < -14
x + 1 > 0
Решить первое неравенство:
2х < -14
х < -14/2
x < -7
x∈(-∞; -7) - интервал решений первого неравенства, от - бесконечности до х= -7.
Неравенство строгое, х= -7 не входит в интервал решений неравенства, скобки круглые.
Решить второе неравенство:
x + 1 > 0
х > -1
х∈(-1; +∞) - интервал решений второго неравенства (при х от -1 до + бесконечности).
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем значения -7, -1, 0, + - бесконечность.
x∈(-∞; -7) - штриховка вправо от - бесконечности до -7, кружок на -7 не закрашенный, так как х= -7 не входит в интервал решений неравенства.
х∈(-1; +∞) - штриховка вправо от -1 до + бесконечности, кружок на -1 не закрашенный, так как х= -1 не входит в интервал решений неравенства.
Пересечения нет, значит, система уравнений не имеет решения.
3.
1) 2х - 10 > 0
2x > 10
x > 5
x∈(5; +∞) - интервал решений неравенства.
Означает, что функция f(x) > 0 ( принимает положительные значения) при х от 5 до + бесконечности.
Неравенство строгое, скобки круглые.
2) 12 - 3х > 0
-3х > -12
3x < 12 при делении на минус знак неравенства меняется
x < 4
x∈(-∞; 4) - интервал решений неравенства.
Означает, что функция g(x) > 0 ( принимает положительные значения) при х от - бесконечности до х=4.
Неравенство строгое, скобки круглые.